More matrix algebra

Definition. The product C of A and B is the matrix

$$C = \begin{bmatrix} AB_1 & AB_2 & \ldots & AB_p \end{bmatrix}$$

where B_1, B_2, \ldots, B_p are the columns of the matrix B.

Row-column dot product definition: The columns of AB are linear combinations of the columns of A. In fact, consider the jth column of AB.

Row-column rule: $(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj}$
Definition. The \(n \times n \) (square) matrix

\[
I_n = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix}
\]

with 1’s down the diagonal and 0’s everywhere else is called the \(n \times n \) identity matrix.

Theorem 2. Let \(A \) be an \(m \times n \) matrix, and let \(B \) and \(C \) be matrices of appropriate sizes. Then

1. \(A(BC) = (AB)C \)
2. \(A(B + C) = AB + AC \)
3. \((B + C)A = BA + CA \)
4. \(r(AB) = (rA)B = A(rB) \) for any scalar \(r \)
5. \(I_mA = A = AI_n \)

Three warnings.

1. \(AB \) does not always equal \(BA \).
2. \(AB = AC \) does not necessarily imply that \(B = C \).
3. \(AB = 0 \) does not necessarily imply that \(A = 0 \) or \(B = 0 \).

We will occasionally need to use the transpose of a matrix.

Definition. Given an \(m \times n \) matrix \(A \), its transpose \(A^T \) is the \(n \times m \) matrix such that

\[
(A^T)_{ij} = A_{ji}.
\]

Example. Consider

\[
M = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6\pi
\end{bmatrix}.
\]
Theorem 3. Let A and B be matrices whose sizes are appropriate for the following sums and products. Then

1. $(A^T)^T = A$
2. $(A + B)^T = A^T + B^T$
3. $(rA)^T = rA^T$
4. $(AB)^T = B^T A^T$

Matrix inverses

Invertible square matrices are more well behaved than arbitrary square matrices.

Definition. Let A be a square matrix for which there exists a square matrix B such that either

1. $AB = I$ or
2. $BA = I$.

Then we say that A is *invertible* and that B is the *inverse* of A.

Examples. Consider

$$A_1 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad A_2 = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}.$$
There is a simple formula for the inverse of a 2×2 matrix.

Theorem 4. Consider the 2×2 matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

If $ad - bc = 0$, then A is not invertible.

Here are some basic properties of inverses.

Theorem 6.

1. If A is an invertible matrix, then A^{-1} is invertible and $(A^{-1})^{-1} = A$.

2. If A and B are $n \times n$ invertible matrices, then AB is invertible. Moreover, $(AB)^{-1} = B^{-1}A^{-1}$.

3. If A is an invertible matrix, then A^T is invertible, and $(A^T)^{-1} = (A^{-1})^T.$
Elementary matrices and computing inverses

Definition. An *elementary* matrix is a matrix that is obtained from the identity matrix by applying exactly one elementary row operation.

There are three types of elementary row operations—one for each type of row operation.

What happens to a matrix if we multiply it by an elementary matrix?
Example.

\[
\begin{bmatrix}
2 & 1 & -1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
2 & 1 & -1 \\
1 & 1 & 0 \\
0 & -1 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 & 0 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 & 0 \\
0 & -1 & -1 \\
0 & -1 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 & 0 \\
0 & -1 & -1 \\
0 & 0 & 2
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{2}
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Algorithm for computing A^{-1}

Form the augmented matrix

$$[A \mid I].$$

Row reduce this matrix so that the left half becomes the identity matrix. At that point, the right half is A^{-1}.