The span of a set of vectors in \mathbb{R}^n

Definition. Given vectors v_1, v_2, \ldots, v_p in \mathbb{R}^n and some choice of real numbers r_1, r_2, \ldots, r_p, then the vector

$$r_1v_1 + r_2v_2 + \ldots + r_pv_p$$

is said to be a linear combination of the vectors v_1, v_2, \ldots, v_p. The numbers r_1, r_2, \ldots, r_p are called the weights of the linear combination.

Definition. Suppose that v_1, v_2, \ldots, v_p are vectors in \mathbb{R}^n. The set of all possible linear combinations of v_1, v_2, \ldots, v_p is called the

$$\text{Span}\{v_1, v_2, \ldots, v_p\}.$$

Note:

1. Every scalar multiple of each v_k is in $\text{Span}\{v_1, v_2, \ldots, v_p\}$.

2. The zero vector is always in the span of any set of vectors.

3. $\text{Span}\{v_1\}$ is the set of all scalar multiples of v_1.
Example. Let

\[v_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \quad \text{and} \quad v_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}. \]

What vectors are in \(\text{Span}\{v_1, v_2\} \)?
Example. Consider the vectors

\[\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} \text{ and } \mathbf{v}_2 = \begin{bmatrix} -5 \\ -8 \\ 2 \end{bmatrix}. \]

For what values of \(x_3 \) is the vector

\[\mathbf{b} = \begin{bmatrix} 3 \\ -5 \\ x_3 \end{bmatrix} \]

in \(\text{Span}\{\mathbf{v}_1, \mathbf{v}_2\} \)? What does this result mean geometrically?
The matrix-vector product Ax

Let A be an $m \times n$ matrix and x be a vector in \mathbb{R}^n. We can define the product Ax as a linear combination of the vectors that come from the columns of A.

Definition. Let A be an $m \times n$ matrix

$$A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix} = \begin{bmatrix}
A_1 \\
A_2 \\
\vdots \\
A_n
\end{bmatrix},$$

where A_k is the kth column of A. Given

$$x = \begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix}$$

in \mathbb{R}^n, we define the matrix-vector product Ax to be the linear combination

$$x_1A_1 + x_2A_2 + \ldots + x_nA_n.$$

Note that Ax is a vector in \mathbb{R}^m.

Example.

$$\begin{bmatrix} 3 & -8 \\ -1 & 5 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -4 \\ 2 \end{bmatrix} = -4 \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} + 2 \begin{bmatrix} -8 \\ 5 \\ 3 \end{bmatrix} = \begin{bmatrix} (-4)(3) + (2)(-8) \\ (-4)(-1) + (2)(5) \\ (-4)(2) + (2)(3) \end{bmatrix} = \begin{bmatrix} -28 \\ 14 \\ -2 \end{bmatrix}$$
Remark. Given an $m \times n$ matrix A and $x \in \mathbb{R}^n$, then the matrix equation

$$Ax = b$$

has the same solution set as the system of linear equations whose augmented matrix is

$$\begin{bmatrix} A_1 & A_2 & \cdots & A_n & b \\ \end{bmatrix} = \begin{bmatrix} A \mid b \end{bmatrix}.$$

Theorem. Let A be an $m \times n$ matrix. Then the following three statements are equivalent:

1. For each b in \mathbb{R}^m, the equation $Ax = b$ has at least one solution.
2. The columns of A span \mathbb{R}^m.
3. The matrix A has a pivot position in every row.

Warning: In this theorem, A is a coefficient matrix. The three statements are not equivalent if A is an augmented matrix.
Observation. Note that the kth entry in Ax is

$$a_{k1}x_1 + a_{k2}x_2 + \ldots + a_{kn}x_n.$$

For example,

$$\begin{bmatrix} * & * \\ 5 & 6 \\ * & * \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} * \\ 5x_1 + 6x_2 \\ * \end{bmatrix}.$$

The expression $a_{k1}x_1 + a_{k2}x_2 + \ldots + a_{kn}x_n$ is called the **dot product** of $[a_{k1} \ a_{k2} \ \ldots \ a_{kn}]$ and the vector x.

Theorem. Let A be an $m \times n$ matrix. Then the matrix-vector product Ax is “linear” in x. That is,

1. $A(u + v) = Au + Av$ for all u and v in \mathbb{R}^n, and

2. $A(cu) = cAu$ for all u in \mathbb{R}^n and all c in \mathbb{R}.