1. (10 points) Let

\[\mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ -7 \end{bmatrix} \quad \text{and} \quad \mathbf{w} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}. \]

(a) Write \(\mathbf{v} \) as the sum of a vector in the line spanned by \(\mathbf{w} \) and a vector orthogonal to \(\mathbf{w} \).

\[
\text{proj} \, \mathbf{v} = \left(\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \right) \mathbf{w} = \frac{6 + 3 - 7}{9 + 1 + 1} = \frac{2}{11} \mathbf{w} = \frac{2}{11} \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{6}{11} \\ \frac{2}{11} \\ \frac{2}{11} \end{bmatrix}
\]

Let \(\mathbf{u} = \mathbf{v} - \text{proj} \, \mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ -7 \end{bmatrix} - \begin{bmatrix} \frac{6}{11} \\ \frac{2}{11} \\ \frac{2}{11} \end{bmatrix} = \begin{bmatrix} \frac{2}{11} \\ \frac{7}{11} \\ \frac{5}{11} \end{bmatrix}
\]

\[\mathbf{v} = \begin{bmatrix} \frac{6}{11} \\ \frac{2}{11} \\ \frac{2}{11} \end{bmatrix} + \begin{bmatrix} \frac{2}{11} \\ \frac{7}{11} \\ \frac{5}{11} \end{bmatrix} \overset{\text{in span} \, \mathbf{w}}{\leadsto} \text{orthogonal to} \, \mathbf{w} \]

(b) Compute the distance of \(\mathbf{v} \) to the line spanned by \(\mathbf{w} \).

\[
\text{distance} = ||\mathbf{u}|| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \frac{1}{11} \sqrt{16^2 + 31^2 + 79^2} = \sqrt{7458} \]

\[= \frac{\sqrt{7458}}{11} \]
2. (10 points) Let A and B be 4×4 matrices with $\det A = 2$ and $\det B = -3$. Compute:

(a) $\det 3A = (3)^4 \det A = (81)(2) = 162$

(b) $\det B^3 = (\det B)(\det B)(\det B) = -27$

(c) $\det AB = (\det A)(\det B) = (2)(-3) = -6$

(d) $\det A^T A = (\det A^T)(\det A) = (\det A)(\det A)$
 $\quad = (2)(2) = 4$

(e) $\det B^{-1}AB = (\det B^{-1})(\det A)(\det B)$
 $\quad = \left(\frac{1}{\det B}\right)(\det A)(\det B)$
 $\quad = \det A = 2$.
3. (14 points) Consider the set S of all vectors

$$
\begin{bmatrix}
 a \\
 b \\
 c \\
 d \\
\end{bmatrix}
$$

in \mathbb{R}^4 such that

$$
\begin{align*}
a - 2b + 2c + d &= 0 \\
-3a + 6b - 5c - d &= 0 \\
4a - 8b + 9c + 6d &= 0.
\end{align*}
$$

(a) Why is S a subspace of \mathbb{R}^4?

$S = \text{null } A$ where $A = \begin{bmatrix}
 1 & -2 & 2 & 1 \\
 -3 & 6 & -5 & -1 \\
 4 & -8 & 9 & 6
\end{bmatrix}$

(b) Determine the dimension of S and find a basis.

$$
A \sim \begin{bmatrix}
 1 & -2 & 2 & 1 \\
 0 & 0 & 1 & 2 \\
 0 & 0 & 1 & 2
\end{bmatrix} \Rightarrow \begin{bmatrix}
 1 & -2 & 2 & 1 \\
 0 & 0 & 1 & 2
\end{bmatrix}
$$

two free variables (b and d) $\Rightarrow \dim S = 2$.

$b = 0$ and $d = 1 \Rightarrow c = -2$
$a = 2b - 2c - d = 3$

$b = 1$ and $d = 0 \Rightarrow c = 0$
$a = 2b - 2c - d = 2$

basis: $\left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ -2 \\ 1 \end{bmatrix} \right\}$
4. (14 points) Consider the matrix

\[
A = \begin{bmatrix}
4 & 0 & -2 \\
2 & 5 & 4 \\
0 & 0 & 5
\end{bmatrix}.
\]

(a) Without doing any computation, explain why \(\lambda = 5 \) is an eigenvalue.

From the second column, we see that
\[AE_2 = 5E_2.\]

(b) What's the "easy" way to show that \(v = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} \) is an eigenvector?

\[AV = \begin{bmatrix} -4 \\ 8 \\ 0 \end{bmatrix} = 4v \quad \text{eigenvalue} = 4\]

(c) Find an invertible matrix \(P \) and a diagonal matrix \(D \) such that \(D = P^{-1}AP \). You do not need to calculate \(P^{-1} \).

\[
\text{char pol} = \det(A - \lambda I) = \begin{vmatrix}
4-\lambda & 0 & -2 \\
2 & 5-\lambda & 4 \\
0 & 0 & 5-\lambda
\end{vmatrix}
\]

\[= (5-\lambda) \begin{vmatrix}
4-\lambda & -2 \\
0 & 5-\lambda
\end{vmatrix} \quad \text{\(\lambda = 4, 5 \)}
\]

\[= (5-\lambda)^2(4-\lambda) \]

\[
nul(A - \lambda I) = nul\begin{bmatrix}
-1 & 0 & -2 \\
2 & 0 & 4 \\
0 & 0 & 0
\end{bmatrix} = nul\begin{bmatrix}
-1 & 0 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

\(\lambda = 5 \) eigenspace: \(x_1 + 2x_3 = 0 \)
#4 (c) cont.

two free variables:

\[x_2 = 1 \text{ and } x_3 = 0 \Rightarrow x_1 = 0 \]

eigenvector is \(e_2 \) (already known).

\[x_2 = 0 \text{ and } x_3 = 1 \Rightarrow x_1 = -2 \]

eigenvector is \(\begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} \).

matrix \(P \) of eigenvectors

\[P = \begin{bmatrix} -1 & 0 & -2 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

In this case,

\[P^4 A P = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} \].
5. (14 points) Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation that first rotates the plane by 45° in the counterclockwise direction, then dilates the plane by a factor of 2, and finally reflects the plane in the x_1-axis.

(a) Find the standard matrix representation for T.

The left-hand point is $(-\sqrt{2}, -\sqrt{2})$ and the right-hand point is $(\sqrt{2}, -\sqrt{2})$.

The matrix A is:

$$
\begin{bmatrix}
\frac{\sqrt{2}}{\sqrt{2}} & -\frac{\sqrt{2}}{\sqrt{2}} \\
-\frac{\sqrt{2}}{\sqrt{2}} & -\frac{\sqrt{2}}{\sqrt{2}}
\end{bmatrix}
$$

(b) Let P be the parallelogram determined by the two vectors

$$
v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{and} \quad v_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.
$$

Calculate the area of $T(P)$.

$$
\text{area } P = \begin{vmatrix}
1 & 1 \\
1 & 3
\end{vmatrix} = 2
$$

$$
\text{area } T(P) = |\det A| \cdot \text{area}(P) = |-4| \cdot (2) = 8
$$
6. (14 points) Note that there is a second part to this problem on the next page. Recall that a matrix is upper triangular if all of its entries below the diagonal are zero. For example, an upper-triangular 3×3 matrix A has the form

$$
A = \begin{bmatrix}
 a_{1,1} & a_{1,2} & a_{1,3} \\
 0 & a_{2,2} & a_{2,3} \\
 0 & 0 & a_{3,3}
\end{bmatrix}
$$

where the entries $a_{1,1}$, $a_{1,2}$, $a_{1,3}$, $a_{2,2}$, $a_{2,3}$, and $a_{3,3}$ can be any real numbers.

(a) Show that the subset S of all upper-triangular matrices in $M_{3 \times 3}$ is a vector subspace of $M_{3 \times 3}$.

1. (not necessary) The zero vector is the zero matrix $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. This matrix is upper triangular.

2. Closed under vector addition:
 Given A as above and
 \[B = \begin{bmatrix}
 b_{11} & b_{12} & b_{13} \\
 0 & b_{22} & b_{23} \\
 0 & 0 & b_{33}
 \end{bmatrix}, \]
 then
 \[A + B = \begin{bmatrix}
 a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\
 0 & a_{22} + b_{22} & a_{23} + b_{23} \\
 0 & 0 & a_{33} + b_{33}
 \end{bmatrix}, \]
 which is upper triangular.

3. Closed under scalar multiplication:
 Given A as above and r in \mathbb{R}
 \[rA = \begin{bmatrix}
 ra_{11} & ra_{12} & ra_{13} \\
 0 & ra_{22} & ra_{23} \\
 0 & 0 & ra_{33}
 \end{bmatrix}, \]
 which is upper triangular.
Problem 6 (continued):

(b) Specify a basis for S and show that it is a basis. What is the dimension of S?

basis consists of six upper triangular matrices:

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}.
\]

$\Rightarrow \dim S = 6$.

Need to verify that these six matrices form a basis of S.

1) Linearly independent: Given a dependence

\[
r_1 \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} + r_2 \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} + r_3 \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} + r_4 \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

\[
+ r_5 \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix} + r_6 \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix},
\]

we see that $r_1 = r_2 = r_3 = r_4 = r_5 = r_6 = 0$.

2) Spans S. Given A on the previous page,

then

\[
A = a_{11} \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} + a_{12} \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} + a_{13} \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

\[
+ a_{22} \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix} + a_{23} \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix} + a_{33} \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]
7. (24 points) Are the following statements true or false? You must justify your answers to receive any credit.

(a) Row operations on a matrix A can change the linear dependence relations among the rows of A.

True. Start with $A_1 = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$
Then row 2 = 2 row 1. Then
$A_1 \sim A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, then
row 2 = 0 row 1.

(b) A square matrix is invertible if and only if it is the product of elementary matrices.

True. We know that a matrix A is invertible \iff A is row equivalent to the identity matrix I. Each row operation corresponds to multiplication by an elementary matrix, so we have:
A is invertible $\iff E_nE_{n-1}\ldots E_2E_1A = I$.
$\iff A = E_1^{-1}E_2^{-1}\ldots E_{n-1}^{-1}E_n^{-1}$.
Problem 7 (continued):

(c) A basis is a spanning set that is as large as possible.

False: One basis for \mathbb{R}^2 is $\{[1, 0], [1, 2]\}$.

A bigger spanning set is $\{[1, 0], [0, 1], [1, 1]\}$.

In fact, one can always increase the number of vectors in a spanning set, so there is no such thing as a largest spanning set.

(d) If λ is an eigenvalue for the $n \times n$ matrix A and μ is an eigenvalue for the $n \times n$ matrix B, then the product $\lambda \mu$ is an eigenvalue for the matrix AB.

False. For example, let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ which has $\lambda = 2, 4$, and let $B = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ which has $\mu = 1, 3$. Then

$AB = \begin{bmatrix} 3 & 3 \\ 1 & 9 \end{bmatrix}$.

$\det(AB - \lambda I) = \begin{vmatrix} 3 - \lambda & 3 \\ 1 & 9 - \lambda \end{vmatrix}$

$= (\lambda - 3)(\lambda - 9) - 3$

$= \lambda^2 - 12\lambda + 24.$

Roots are $\frac{12 \pm \sqrt{144 - 96}}{2}$

$= 6 \pm \sqrt{12}$.
Problem 7 (continued):

(e) Every projection matrix is orthogonal.

False. Projection onto the line \(x_2 = x_1 \)

is \(P = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \). The columns
are neither orthogonal nor
unit length.

(f) Every projection matrix is diagonalizable.

True. Consider projection onto the
subspace \(W \) of \(\mathbb{R}^n \). If \(\dim W = k \),
then \(W \) is the \(k \) dimensional
eigen space corresponding to \(\lambda = 1 \),
and \(W^\perp \) is the \(n-k \) dimensional
eigen space corresponding to \(\lambda = 0 \).
We can diagonalize a matrix if there
is a basis of \(\mathbb{R}^n \) of eigen vectors. Pick
a basis \(\{u_1, \ldots, u_k\} \) of \(W \) and a basis
\(\{v_1, \ldots, v_{n-k}\} \) of \(W^\perp \). Then
\(\{u_1, \ldots, u_k, v_1, \ldots, v_{n-k}\} \) is the required
basis.