More on subspaces of vector spaces

Definition. A nonempty subset \(S \) of a vector space \(V \) is a *subspace* of \(V \) if

1. the zero vector \(0 \) is in \(S \),
2. (closure under vector addition) for each \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) in \(S \), the vector sum \(\mathbf{v}_1 + \mathbf{v}_2 \) is in \(S \), and
3. (closure under scalar multiplication) for each \(r \) in \(\mathbb{R} \) and each \(\mathbf{v} \) in \(S \), the scalar multiple \(r\mathbf{v} \) is in \(S \).

Note. A subspace \(S \) of a vector space \(V \) is a vector space in its own right.

Examples. Last class we saw that the line \(x_2 = 3x_1 \) is a subspace of the vector space \(\mathbb{R}^2 \).

Also the line \(x_2 = x_1 + 1 \) is not a subspace of \(\mathbb{R}^2 \).

Example. Let \(\mathbb{P} \) represent the vector space of all polynomial functions as discussed last class. Is \(\mathbb{P} \) a subspace of the vector space of all functions \(f : \mathbb{R} \to \mathbb{R} \)?
Example. Consider the subset $S = \text{Span}\{x, x^2\}$ within \mathbb{P}. Is S a subspace of \mathbb{P}?

Theorem. If v_1, v_2, \ldots, v_p are vectors in a vector space V, then $\text{Span}\{v_1, v_2, \ldots, v_p\}$ is a subspace of V.
Example. Let V be the vector space of all functions $f : \mathbb{R} \to \mathbb{R}$. Which of the following subsets of V are subspaces of V?

1. The set of all constant functions.

2. The set of all functions f such that $f(2) = 1$.

3. The set of all functions f such that $f(2) = 0$.

4. The set of all polynomials of degree 3.

5. The set of all polynomials whose degree is at most 3.

6. The set of all differentiable functions.
Subspaces associated to a matrix

There are three important subspaces associated to an $m \times n$ matrix A. Let c_1, \ldots, c_n represent the columns of A. That is,

$$A = \begin{bmatrix} c_1 & c_2 & \ldots & c_n \end{bmatrix}.$$

These column vectors are vectors in \mathbb{R}^m.

Let r_1, \ldots, r_m represent the rows of A. That is,

$$A = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{bmatrix}.$$

These row vectors are vectors in \mathbb{R}^n.

The column space of A. The column space of A is the span of the columns of A. We write

$$\text{Col } A = \text{Span}\{c_1, \ldots, c_n\}.$$

The row space of A. The row space of A is the span of the rows of A. We write

$$\text{Row } A = \text{Span}\{r_1, \ldots, r_m\}.$$

The null space of A. The null space of A is the set of all vectors x in \mathbb{R}^n such that

$$Ax = 0.$$

The null space of A is denoted by $\text{Nul } A$.

4
Theorem. Let A be an $m \times n$ matrix. The column space of A is a subspace of \mathbb{R}^m, and the null space and the row space of A are subspaces of \mathbb{R}^n.

Application. Any plane through the origin in \mathbb{R}^3 is a subspace of \mathbb{R}^3.