A little more about coordinate transformations

Last class we saw that the coordinate transformation $[\cdot]_B : \mathbb{P}^3 \to \mathbb{R}^4$ given by the basis $B = \{1, x, x^2, x^3\}$ is an isomorphism between \mathbb{P}^3 and \mathbb{R}^4.

Example. For what n is \mathbb{R}^n isomorphic to $M_{2 \times 3}$?

The dimension of a vector space

The number of elements in a basis of a vector space is an important quantity associated with the space.

In order to be more precise, we need to distinguish between finite-dimensional vector spaces and infinite-dimensional vector spaces.

Definition. A vector space V is finite dimensional if it contains a finite spanning set. Otherwise, V is said to be infinite dimensional.

Example. The vector space \mathbb{R}^n is spanned by the standard basis $\{e_1, \ldots, e_n\}$. Therefore, it is finite dimensional.

Example. The vector space \mathbb{P}_3 of all polynomial functions whose degree is at most three is spanned by the basis $\{1, x, x^2, x^3\}$. Therefore, it is finite dimensional.

Example. \mathbb{P} is the vector space of all polynomial functions of all degrees. It is infinite-dimensional because it does not contain any finite spanning set. (Why not?)
Theorem. Let V be a vector space. Any finite spanning set for V has at least as many elements as any linearly independent subset of V.

Corollary. Any two bases of a finite-dimensional vector space V have the same number of elements.
Definition. The dimension of a finite-dimensional vector space V is the number of elements in any basis of V. This nonnegative integer is denoted $\dim V$.

Examples.

1. $\dim \mathbb{R}^n = n$

2. Let P be the plane $x_1 + x_2 + x_3 = 0$ in \mathbb{R}^3. A basis is

$$\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \right\}.$$

Hence, $\dim P = 2$.

3. $\dim \mathbb{P}_3 = 4$

4. $\dim M_{2 \times 3} = 6$

Here are a couple of other consequences of the notion of dimension.

Theorem. If $\dim V = n$, then any set in V with more than n vectors must be linearly dependent.

Theorem. If H is a subspace of V, then $\dim H \leq \dim V$. In fact, any basis of H can be expanded to a basis of V.
Suppose that A is an $m \times n$ matrix. How can we determine the dimensions of $\text{Col } A$ and $\text{Nul } A$?

Example. Let

$$A = \begin{bmatrix}
1 & -3 & 4 & -1 & 9 \\
-2 & 6 & -6 & -1 & -10 \\
-3 & 9 & -6 & -6 & -3 \\
3 & -9 & 4 & 9 & 0
\end{bmatrix}. $$

What relationship is there between the dimensions of $\text{Col } A$ and $\text{Nul } A$?