The vector space \mathbb{R}^n

Definition. The vector space \mathbb{R}^n is the set of all n-tuples of real numbers. That is, \mathbb{R}^n is the set of all possible $n \times 1$ “column vectors” of the form

\[
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix},
\]

where x_k is a real number for $k = 1, 2, \ldots, n$.

Vector addition: Given two vectors

\[
v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \quad \text{and} \quad w = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix},
\]

the vector sum $v + w$ is the vector

\[
\begin{bmatrix} v_1 + w_1 \\ \vdots \\ v_n + w_n \end{bmatrix}.
\]

Vector addition can be visualized using the parallelogram rule.

Scalar multiplication: Given a vector

\[
v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}
\]

and a real number (a “scalar”) r, then

\[
rv = \begin{bmatrix} rv_1 \\ \vdots \\ rv_n \end{bmatrix}.
\]
Algebraic Properties of \mathbb{R}^n

For all u, v, w in \mathbb{R}^n and all scalars c and d:

- $u + v = v + u$ \hspace{1cm} \text{commutative property}
- $(u + v) + w = u + (v + w)$ \hspace{1cm} \text{associative property}
- $u + 0 = 0 + u = u$ \hspace{1cm} \text{zero vector}
- $u + (-u) = -u + u = 0$ \hspace{1cm} $-u$ denotes $(-1)u$
- $c(u + v) = cu + cv$ \hspace{1cm} \text{distributive property}
- $(c + d)u + cu + du$
- $c(du) = (cd)u$
- $1u = u$

Example. The set of all points (x_1, x_2, x_3) in \mathbb{R}^3 that satisfy the equation

$$x_1 + x_2 + x_3 = 0$$

is a plane. How can we describe this plane using vector operations?

Definition. Given vectors v_1, v_2, \ldots, v_p in \mathbb{R}^n and some choice of real numbers r_1, r_2, \ldots, r_p, then the vector

$$r_1v_1 + r_2v_2 + \ldots + r_pv_p$$

is said to be a linear combination of the vectors v_1, v_2, \ldots, v_p. The numbers r_1, r_2, \ldots, r_p are called the weights of the linear combination.

Examples.
Important question: Given vectors \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p \) as well as a vector \(\mathbf{b} \), is \(\mathbf{b} \) a linear combination of \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p \)?

Example. Given

\[
\begin{align*}
\mathbf{v}_1 &= \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \end{bmatrix}, & \mathbf{v}_2 &= \begin{bmatrix} -1 \\ -1 \\ 2 \\ 0 \end{bmatrix}, & \mathbf{v}_3 &= \begin{bmatrix} 2 \\ 3 \\ 3 \\ 1 \end{bmatrix}, & \mathbf{v}_4 &= \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}
\end{align*}
\]

and

\[
\begin{align*}
\mathbf{b}_1 &= \begin{bmatrix} -3 \\ -2 \\ 3 \\ -1 \end{bmatrix}, & \mathbf{b}_2 &= \begin{bmatrix} 5 \\ 6 \\ 1 \\ 1 \end{bmatrix}.
\end{align*}
\]

Is either \(\mathbf{b}_1 \) or \(\mathbf{b}_2 \) a linear combination of \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \)?

(Additional white space on the top of the next page.)
Definition. Suppose that v_1, v_2, \ldots, v_p are vectors in \mathbb{R}^n. The set of all possible linear combinations of v_1, v_2, \ldots, v_p is called the

$$\text{span}\{v_1, v_2, \ldots, v_p\}.$$

Note:

1. Every scalar multiple of each v_k is in $\text{span}\{v_1, v_2, \ldots, v_p\}$.

2. The zero vector is always in the span of any set of vectors.

3. The $\text{span}\{v_1\}$ is the set of all scalar multiples of v_1.
