More on the matrix-vector product Ax

Let A be an $m \times n$ matrix and x be a vector in \mathbb{R}^n. We define the product Ax as a linear combination of the vectors that come from the columns of A.

Let

$$A = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix} = \begin{bmatrix}
 A_1 \\
 A_2 \\
 \vdots \\
 A_n
\end{bmatrix} \quad \text{and} \quad x = \begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}.$$

Then the matrix-vector product Ax is the linear combination

$$x_1 A_1 + x_2 A_2 + \ldots + x_n A_n.$$

Note that Ax is a vector in \mathbb{R}^m.

Example.

$$\begin{bmatrix}
 3 & -8 \\
 -1 & 5 \\
 2 & 3
\end{bmatrix} \begin{bmatrix}
 -4 \\
 2
\end{bmatrix} = -4 \begin{bmatrix}
 3 \\
 -1 \\
 2
\end{bmatrix} + 2 \begin{bmatrix}
 -8 \\
 5 \\
 3
\end{bmatrix} = \begin{bmatrix}
 -28 \\
 14 \\
 -2
\end{bmatrix}$$

Remark. Given an $m \times n$ matrix A and $x \in \mathbb{R}^n$, then the matrix equation

$$Ax = b$$

has the same solution set as the system of linear equations whose augmented matrix is

$$\begin{bmatrix}
 A_1 & A_2 & \cdots & A_n & b
\end{bmatrix}.$$
Theorem. Let \(A \) be an \(m \times n \) matrix. Then the following three statements are equivalent:

1. For each \(b \) in \(\mathbb{R}^m \), the equation \(Ax = b \) has at least one solution.
2. The columns of \(A \) span \(\mathbb{R}^m \).
3. The matrix \(A \) has a pivot position in every row.

Warning: In this theorem, \(A \) is a coefficient matrix. The three statements are not equivalent if \(A \) is an augmented matrix.
Observation. Note that the kth entry in Ax is

$$a_{k1}x_1 + a_{k2}x_2 + \ldots + a_{kn}x_n.$$

For example,

$$\begin{bmatrix}
* & * \\
5 & 6 \\
* & *
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} =
\begin{bmatrix}
* \\
5x_1 + 6x_2 \\
*
\end{bmatrix}.$$

The expression

$$a_{k1}x_1 + a_{k2}x_2 + \ldots + a_{kn}x_n$$

is called the dot product of $[a_{k1} \ a_{k2} \ \ldots \ a_{kn}]$ and the vector x.

Theorem. Let A be an $m \times n$ matrix. Then the matrix-vector product Ax is “linear” in x. That is,

1. $A(u + v) = Au + Av$ for all u and v in \mathbb{R}^n, and
2. $A(cu) = cAu$ for all u in \mathbb{R}^n and all c in \mathbb{R}.

Solution sets of systems of linear equations

Definition. Consider a linear system $Ax = b$. We say that it is *homogeneous* if $b = 0$ and *nonhomogeneous* otherwise.

The homogeneous case $Ax = 0$

Observation. Note that every homogeneous system is consistent. The solution $x = 0$ is called the trivial solution. All other solutions are said to be nontrivial.

Theorem. If v_1 and v_2 are two solutions to the homogeneous system $Ax = 0$, then any linear combination of v_1 and v_2 is also a solution.
Example. Let

\[A = \begin{bmatrix} 1 & 6 & 0 & -1 & -2 \\ 0 & 0 & 1 & 4 & 6 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}. \]

Express the solution set for \(Ax = 0 \) as a span. (Note that \(A \) is a coefficient matrix, not an augmented matrix.)