More matrix algebra

Definition. The product C of A and B is the matrix

$$ C = \begin{bmatrix} AB_1 & AB_2 & \ldots & AB_p \end{bmatrix} $$

where B_1, B_2, \ldots, B_p are the columns of the matrix B.

Example. Let $A : \mathbb{R}^2 \to \mathbb{R}^2$ be rotation by 45° and let $B : \mathbb{R}^2 \to \mathbb{R}^2$ be the matrix transformation determined by the matrix

$$ \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}. $$

At the end of last class we determined that the matrix representation for the transformation $A \circ B$ is

$$ \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 \\ 2 & \frac{\sqrt{2}}{2} \\ \frac{3\sqrt{2}}{2} & \sqrt{2} \end{bmatrix}. $$

Row-column dot product definition: The columns of AB are linear combinations of the columns of A. In fact, consider the jth column of AB.

Row-column rule: $(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj}$
Definition. The \(n \times n \) (square) matrix

\[
I_n = \begin{bmatrix}
1 & 0 & \ldots & \ldots & 0 \\
0 & 1 & \ldots & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & \ldots & 1
\end{bmatrix}
\]

with 1’s down the diagonal and 0’s everywhere else is called the \(n \times n \) identity matrix.

Theorem 2. Let \(A \) be an \(m \times n \) matrix, and let \(B \) and \(C \) be matrices of appropriate sizes. Then

1. \(A(BC) = (AB)C \)
2. \(A(B + C) = AB + AC \)
3. \((B + C)A = BA + CA \)
4. \(r(AB) = (rA)B = A(rB) \) for any scalar \(r \)
5. \(I_m A = A = AI_n \)

Three warnings.

1. \(AB \) does not always equal \(BA \).
2. \(AB = AC \) does not necessarily imply that \(B = C \).
3. \(AB = 0 \) does not necessarily imply that \(A = 0 \) or \(B = 0 \).

We will occasionally need to use the transpose of a matrix.

Definition. Given an \(m \times n \) matrix \(A \), its transpose \(A^T \) is the \(n \times m \) matrix such that

\[
(A^T)_{ij} = A_{ji}.
\]

Example. Consider

\[
M = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6\pi
\end{bmatrix}.
\]
Theorem 3. Let A and B be matrices whose sizes are appropriate for the following sums and products. Then

1. $(A^T)^T = A$
2. $(A + B)^T = A^T + B^T$
3. $(rA)^T = rA^T$
4. $(AB)^T = B^T A^T$

Matrix inverses

Invertible square matrices are more well behaved than arbitrary square matrices.

Definition. Let A be a square matrix for which there exists a square matrix B such that either

1. $AB = I$
2. $BA = I$.

Then we say that A is invertible and that B is the inverse of A.

Examples. Consider

$A_1 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ and $A_2 = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$.
There is a simple formula for the inverse of a 2×2 matrix.

Theorem 4. Consider the 2×2 matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

If $ad - bc = 0$, then A is not invertible.

Here are some basic properties of inverses.

Theorem 6.

1. If A is an invertible matrix, then A^{-1} is invertible and $(A^{-1})^{-1} = A$.

2. If A and B are $n \times n$ invertible matrices, then AB is invertible. Moreover, $(AB)^{-1} = B^{-1}A^{-1}$.

3. If A is an invertible matrix, then A^T is invertible, and $(A^T)^{-1} = (A^{-1})^T$.

4