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Elementary matrices and computing inverses

Definition. An elementary matrix is a matrix that is obtained from the identity matrix by
applying exactly one elementary row operation.

There are three types of elementary row operations—one for each type of row operation.
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What happens to a matrix if we multiply it by an elementary matrix?

Example.  2 1 −1
1 1 0
1 0 1


 0 1 0

1 0 0
0 0 1

  1 1 0
2 1 −1
1 0 1


 1 0 0
−2 1 0

0 0 1

  1 1 0
0 −1 −1
1 0 1


 1 0 0

0 1 0
−1 0 1

  1 1 0
0 −1 −1
0 −1 1


 1 0 0

0 1 0
0 −1 1

  1 1 0
0 −1 −1
0 0 2


 1 0 0

0 1 0
0 0 1

2

  1 1 0
0 −1 −1
0 0 1


 1 0 0

0 1 1
0 0 1

  1 1 0
0 −1 0
0 0 1


 1 1 0

0 1 0
0 0 1

  1 0 0
0 −1 0
0 0 1


 1 0 0

0 −1 0
0 0 1

  1 0 0
0 1 0
0 0 1


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Algorithm for computing A−1

Form the augmented matrix [ A | I ]. Row reduce this matrix so that the left half becomes
the identity matrix. At that point, the right half is A−1. 2 1 −1 1 0 0

1 1 0 0 1 0
1 0 1 0 0 1


 0 1 0

1 0 0
0 0 1

  1 1 0 0 1 0
2 1 −1 1 0 0
1 0 1 0 0 1


 1 0 0
−2 1 0

0 0 1

  1 1 0 0 1 0
0 −1 −1 1 −2 0
1 0 1 0 0 1


 1 0 0

0 1 0
−1 0 1

  1 1 0 0 1 0
0 −1 −1 1 −2 0
0 −1 1 0 −1 1


 1 0 0

0 1 0
0 −1 1

  1 1 0 0 1 0
0 −1 −1 1 −2 0
0 0 2 −1 1 1


 1 0 0

0 1 0
0 0 1

2

  1 1 0 0 1 0
0 −1 −1 1 −2 0
0 0 1 −1

2
1
2

1
2


 1 0 0

0 1 1
0 0 1

  1 1 0 0 1 0
0 −1 0 1

2
−3

2
1
2

0 0 1 −1
2

1
2

1
2


 1 1 0

0 1 0
0 0 1




1 0 0 1
2
−1

2
1
2

0 −1 0 1
2
−3

2
1
2

0 0 1 −1
2

1
2

1
2


 1 0 0

0 −1 0
0 0 1




1 0 0 1
2
−1

2
1
2

0 1 0 −1
2

3
2
−1

2

0 0 1 −1
2

1
2

1
2


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The Invertible Matrix Theorem

Theorem. Let A be an n×n matrix. Then the following twelve statements are equivalent:

(a) A is an invertible matrix.

(b) A is row equivalent to the identity matrix.

(c) A has n pivot positions

(d) The equation Ax = 0 has no nontrivial solutions.

(e) The columns of A are linearly independent.

(f) The linear transformation T (x) = Ax is one-to-one.

(g) The equation Ax = b has at least one solution for each b ∈ Rn.

(h) The columns of A span Rn.

(i) The linear transformation T (x) = Ax maps Rn onto Rn.

(j) There is an n× n matrix C such that CA = I.

(k) There is an n× n matrix D such that AD = I.

(l) AT is an invertible matrix.
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Comments on the proof:
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Determinants

We start with a recursive definition of the determinant.

Definition. The determinant of a 1× 1 matrix [a11] is a11.

Now we define the determinant of an n×n matrix in terms of determinants of (n−1)×(n−1)
matrices.

Definition. Given an n × n matrix A, the ijth minor Aij of A is the (n − 1) × (n − 1)
matrix obtained from A by eliminating the ith row and jth column. The ijth cofactor of A
is

Cij = (−1)i+j det Aij.

Example. Compute the cofactors of the third column of the matrix

A =

−1 4 7
3 −2 −2
4 0 2

 .
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Definition/Theorem. If A is an n × n matrix, the determinant of A can be computed
using cofactor expansion along the ith row by

det A = ai1Ci1 + ai2Ci2 + . . .+ ainCin

or by cofactor expansion along the jth column by

det A = a1jC1j + a2jC2j + . . .+ anjCnj.

Any row or any column yields the same result.

Example. Compute the determinant of the matrix

A =

−1 4 7
3 −2 −2
4 0 2


by cofactor expansion along the third column.

Note that we get the familiar formula

det

[
a b
c d

]
= ad− bc.

Is there a way to define det A without recursion?
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