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Elementary matrices and computing inverses

Definition. An elementary matrix is a matrix that is obtained from the identity matrix by
applying exactly one elementary row operation.

There are three types of elementary row operations—one for each type of row operation.
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What happens to a matrix if we multiply it by an elementary matrix?

Example.
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Algorithm for computing A™"

Form the augmented matrix [ A | I |. Row reduce this matrix so that the left half becomes
the identity matrix. At that point, the right half is A"
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The Invertible Matrix Theorem
Theorem. Let A be an n x n matrix. Then the following twelve statements are equivalent:

(a) A is an invertible matrix.

(b) A is row equivalent to the identity matrix.

(c¢) A has n pivot positions

(d) The equation Ax = 0 has no nontrivial solutions.

(e) The columns of A are linearly independent.

(f) The linear transformation 7'(x) = Ax is one-to-one.

(g) The equation Ax = b has at least one solution for each b € R™.

(h) The columns of A span R™.

(i) The linear transformation 7'(x) = Ax maps R™ onto R".

(j) There is an n x n matrix C such that CA = 1.

(k) There is an n x n matrix D such that AD = 1.

(1) AT is an invertible matrix.
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Comments on the proof:

() > Ce)
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Determinants
We start with a recursive definition of the determinant.
Definition. The determinant of a 1 x 1 matrix [a1;] is a;.

Now we define the determinant of an n x n matrix in terms of determinants of (n—1) x (n—1)
matrices.

Definition. Given an n x n matrix A, the ijth minor A;; of A is the (n —1) x (n — 1)
matrix obtained from A by eliminating the ¢th row and jth column. The ¢jth cofactor of A
is

Ci' = (—1)i+j det A”

Example. Compute the cofactors of the third column of the matrix

—1 4 7
A= 3 =2 =2
4 0 2
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Definition/Theorem. If A is an n X n matrix, the determinant of A can be computed
using cofactor expansion along the ith row by

det A = 0;1Ci1 + a;2Ci0 + ... + 4, Cin,
or by cofactor expansion along the jth column by

det A = a1;C1; + ag;Cy; + ... + a,;Cpj.
Any row or any column yields the same result.

Example. Compute the determinant of the matrix

—1 4 7
A= 3 =2 =2
4 0 2

by cofactor expansion along the third column.

Note that we get the familiar formula

a b

det[c d} = ad — be.

Is there a way to define det A without recursion?



