Elementary matrices and computing inverses
Definition. An elementary matrix is a matrix that is obtained from the identity matrix by applying exactly one elementary row operation.

There are three types of elementary row operations - one for each type of row operation.

MA 242	October 11, 2012

What happens to a matrix if we multiply it by an elementary matrix?
Example.

$$
\left.\begin{array}{ll}
{\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{rrr}
2 & 1 & -1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]} \\
{\left[\begin{array}{rrr}
1 & 1 & 0 \\
2 & 1 & -1 \\
1 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]} \\
0 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{rrr}
1 & 1 & 0 \\
0 & -1 & -1 \\
1 & 0 & 1
\end{array}\right]
$$

MA 242 October 11, 2012

Algorithm for computing \mathbf{A}^{-1}
Form the augmented matrix $[\mathbf{A} \mid \mathbf{I}]$. Row reduce this matrix so that the left half becomes the identity matrix. At that point, the right half is \mathbf{A}^{-1}.

$$
\left.\begin{array}{lll}
{\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{rrrrrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{rrrrrr}
2 & 1 & -1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{lrrrrr}
1 & 1 & 0 & 0 & 1 & 0 \\
2 & 1 & -1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]} & {\left[\begin{array}{rrrrrr}
1 & 1 & 0 & 0 & 1 & 0 \\
0 & -1 & -1 & 1 & -2 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]}
\end{array} \begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{rrrrrr}
1 & 1 & 0 & 0 & 1 & 0 \\
0 & -1 & -1 & 1 & -2 & 0 \\
0 & -1 & 1 & 0 & -1 & 1
\end{array}\right]
$$

The Invertible Matrix Theorem
Theorem. Let A be an $n \times n$ matrix. Then the following twelve statements are equivalent:
(a) \mathbf{A} is an invertible matrix.
(b) \mathbf{A} is row equivalent to the identity matrix.
(c) \mathbf{A} has n pivot positions
(d) The equation $\mathbf{A x}=\mathbf{0}$ has no nontrivial solutions.
(e) The columns of \mathbf{A} are linearly independent.
(f) The linear transformation $T(\mathbf{x})=\mathbf{A} \mathbf{x}$ is one-to-one.
(g) The equation $\mathbf{A x}=\mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^{n}$.
(h) The columns of \mathbf{A} span \mathbb{R}^{n}.
(i) The linear transformation $T(\mathbf{x})=\mathbf{A x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}.
(j) There is an $n \times n$ matrix \mathbf{C} such that $\mathbf{C A}=\mathbf{I}$.
(k) There is an $n \times n$ matrix \mathbf{D} such that $\mathbf{A D}=\mathbf{I}$.
(l) \mathbf{A}^{T} is an invertible matrix.

Comments on the proof:

Determinants

We start with a recursive definition of the determinant.
Definition. The determinant of a 1×1 matrix $\left[a_{11}\right]$ is a_{11}.
Now we define the determinant of an $n \times n$ matrix in terms of determinants of $(n-1) \times(n-1)$ matrices.

Definition. Given an $n \times n$ matrix \mathbf{A}, the $i j$ th minor $\mathbf{A}_{i j}$ of \mathbf{A} is the $(n-1) \times(n-1)$ matrix obtained from A by eliminating the i th row and j th column. The $i j$ th cofactor of \mathbf{A} is

$$
C_{i j}=(-1)^{i+j} \operatorname{det} \mathbf{A}_{i j} .
$$

Example. Compute the cofactors of the third column of the matrix

$$
\mathbf{A}=\left[\begin{array}{rrr}
-1 & 4 & 7 \\
3 & -2 & -2 \\
4 & 0 & 2
\end{array}\right]
$$

Definition/Theorem. If \mathbf{A} is an $n \times n$ matrix, the determinant of \mathbf{A} can be computed using cofactor expansion along the i th row by

$$
\operatorname{det} \mathbf{A}=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\ldots+a_{i n} C_{i n}
$$

or by cofactor expansion along the j th column by

$$
\operatorname{det} \mathbf{A}=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\ldots+a_{n j} C_{n j} .
$$

Any row or any column yields the same result.
Example. Compute the determinant of the matrix

$$
\mathbf{A}=\left[\begin{array}{rrr}
-1 & 4 & 7 \\
3 & -2 & -2 \\
4 & 0 & 2
\end{array}\right]
$$

by cofactor expansion along the third column.

Note that we get the familiar formula

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

Is there a way to define $\operatorname{det} \mathbf{A}$ without recursion?

