Elementary matrices and computing inverses

Definition. An *elementary* matrix is a matrix that is obtained from the identity matrix by applying exactly one elementary row operation.

There are three types of elementary row operations—one for each type of row operation.

_

What happens to a matrix if we multiply it by an elementary matrix?

Example.

		$\left[\begin{array}{rrrr} 2 & 1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right]$
$\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}$
$\begin{bmatrix} 1 & 0 \\ -2 & 1 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	$\left[\begin{array}{rrrr} 1 & 1 & 0 \\ 0 & -1 & -1 \\ 1 & 0 & 1 \end{array}\right]$
$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	$\left[\begin{array}{rrrr} 1 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & 1 \end{array}\right]$
$\left[\begin{array}{rrr}1&0\\0&1\\0&-1\end{array}\right.$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	$\left[\begin{array}{rrrr} 1 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 2 \end{array}\right]$
$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} \end{bmatrix}$	$\left[\begin{array}{rrrr} 1 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 1 \end{array}\right]$
$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$	$\left[\begin{array}{rrrr} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right]$
$\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	$\left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right]$
$\begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	$\left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$

Algorithm for computing \mathbf{A}^{-1}

Form the augmented matrix [$\mathbf{A} \mid \mathbf{I}$]. Row reduce this matrix so that the left half becomes the identity matrix. At that point, the right half is \mathbf{A}^{-1} .

	$\begin{bmatrix} 2 & 1 & -1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$
$\left[\begin{array}{rrrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]$	$\begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 2 & 1 & -1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$
$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -1 & -1 & 1 & -2 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -1 & -1 & 1 & -2 & 0 \\ 0 & -1 & 1 & 0 & -1 & 1 \end{bmatrix}$
$\left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{array}\right]$	$\begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -1 & -1 & 1 & -2 & 0 \\ 0 & 0 & 2 & -1 & 1 & 1 \end{bmatrix}$
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -1 & -1 & 1 & -2 & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$
$\left[\begin{array}{rrrr}1 & 0 & 0\\0 & 1 & 1\\0 & 0 & 1\end{array}\right]$	$\begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & \frac{1}{2} & -\frac{3}{2} & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$
$\left[\begin{array}{rrrr}1 & 1 & 0\\0 & 1 & 0\\0 & 0 & 1\end{array}\right]$	$\begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & -1 & 0 & \frac{1}{2} & -\frac{3}{2} & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$
$\left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right]$	$\begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & -\frac{1}{2} & \frac{3}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$

The Invertible Matrix Theorem

Theorem. Let A be an $n \times n$ matrix. Then the following twelve statements are equivalent:

- (a) **A** is an invertible matrix.
- (b) A is row equivalent to the identity matrix.
- (c) **A** has n pivot positions
- (d) The equation $\mathbf{A}\mathbf{x} = \mathbf{0}$ has no nontrivial solutions.
- (e) The columns of **A** are linearly independent.
- (f) The linear transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ is one-to-one.
- (g) The equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^n$.
- (h) The columns of \mathbf{A} span \mathbb{R}^n .
- (i) The linear transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- (j) There is an $n \times n$ matrix **C** such that **CA** = **I**.
- (k) There is an $n \times n$ matrix **D** such that AD = I.
- (l) \mathbf{A}^T is an invertible matrix.

Comments on the proof:

$\mathrm{MA}\ 242$

Determinants

We start with a recursive definition of the determinant.

Definition. The determinant of a 1×1 matrix $[a_{11}]$ is a_{11} .

Now we define the determinant of an $n \times n$ matrix in terms of determinants of $(n-1) \times (n-1)$ matrices.

Definition. Given an $n \times n$ matrix **A**, the *ij*th minor \mathbf{A}_{ij} of **A** is the $(n-1) \times (n-1)$ matrix obtained from **A** by eliminating the *i*th row and *j*th column. The *ij*th cofactor of **A** is

$$C_{ij} = (-1)^{i+j} \det \mathbf{A}_{ij}.$$

Example. Compute the cofactors of the third column of the matrix

$$\mathbf{A} = \begin{bmatrix} -1 & 4 & 7 \\ 3 & -2 & -2 \\ 4 & 0 & 2 \end{bmatrix}.$$

Definition/Theorem. If A is an $n \times n$ matrix, the determinant of A can be computed using cofactor expansion along the *i*th row by

$$\det \mathbf{A} = a_{i1}C_{i1} + a_{i2}C_{i2} + \ldots + a_{in}C_{in}$$

or by cofactor expansion along the jth column by

$$\det \mathbf{A} = a_{1j}C_{1j} + a_{2j}C_{2j} + \ldots + a_{nj}C_{nj}.$$

Any row or any column yields the same result.

Example. Compute the determinant of the matrix

$$\mathbf{A} = \begin{bmatrix} -1 & 4 & 7 \\ 3 & -2 & -2 \\ 4 & 0 & 2 \end{bmatrix}$$

by cofactor expansion along the third column.

Note that we get the familiar formula

$$\det \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = ad - bc.$$

Is there a way to define det **A** without recursion?