MA 242 October 16, 2012

More on the definition of the determinant
Last class we started defining the determinant recursively.
Definition. The determinant of a 1 x 1 matrix [a11] is a1;.

Definition. Given an n x n matrix A, the ¢jth minor A;; of A is the (n —1) x (n — 1)
matrix obtained from A by eliminating the ¢th row and jth column. The ¢5th cofactor of A
is

CZ“ = (—1)i+j det Al]

Example. We computed the cofactors of the third column of the matrix

—1 4 7
A= 3 -2 =2
4 0 2
The 1, 3-minor is
3 =2
A1,3 - |: 4 O :| )

and the corresponding cofactor is Cy 3 = (+1) det A; 3 = 8.
The 2, 3-minor is
—1 4
A2,3 - |: 4 O :| )
and the corresponding cofactor is Cy 3 = (—1) det Ay 3 = 16.
The 3, 3-minor is
—1 4
A3,3 - |: 3 _2 :| Y
and the corresponding cofactor is Cs 3 = (+1) det A5 = —10.

Definition/Theorem. If A is an n X n matrix, the determinant of A can be computed
using cofactor expansion along the ith row by

det A = a;1Ci1 + appCio + ... + a;nCiy,
or by cofactor expansion along the jth column by
det A = aUC’U + CLQjCQj + ...+ CLnanj.

Cofactor expansion along any row or any column yields the same result.
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Example. Compute the determinant of the matrix

—1 4 7
A= 3 =2 =2
4 0 2

by cofactor expansion along the third column.

Note that we get the familiar formula

a b
det[c d] = ad — be.

Is there a way to define det A without recursion?
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How do we go about computing det A7
One type of matrix is perfectly suited for cofactor expansion.

Theorem. If A is a triangular matrix, then det A is the product of its entries along the
main diagonal.
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Properties of the determinant

In order to gain some insight into how we will compute determinants in general, let’s calculate
the determinants of all elementary 3 x 3 matrices.

Theorem. Let A and B be n x n matrices. Then
1. The matrix A is invertible if and only if det A # 0.
2. det AT = det A
3. det AB = (det A)(det B)
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Given the fact that det AB = (det A)(det B), we can consider the determinant of the product
EA

where E is an elementary matrix.

Row operations and the determinant:

1. Suppose that B is obtained from A by applying exactly one row replacement row
operation, then

detB =

2. Suppose that B is obtained from A by applying exactly one row swap row operation,
then

detB =

3. Suppose that B is obtained from A by applying exactly one row scaling row operation,
then

detB =
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Corollary. If A has two identical rows, then det A = 0.

Proof of the fact that doing a row replacement row operation does not change the determi-
nant: Suppose that

where Ry, Rs, ..., R, represent the rows of A.
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Example. Consider the 4 x 4 matrix

2 =2 4 14
4 3 1 2
A= —1 8 6 2
2 =2 4 =3

Let’s calculate the determinant of A using row operations.

Some practice with the properties of determinants:

Let A and B be 4 x 4 matrices with det A = 3 and det B = —2. Compute:

1. det AB

2. det B®

3. det2A

4. det ATA

5. det B"'AB



