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More on matrix multiplication

Last class we learned how to multiply two matrices. If A is an m X n-matrix and B is an
n X p-matrix, then the product C of A and B is the matrix

C=| AB, |[AB,| ... |AB,

where By, By, ..., B, are the columns of B. We also saw that the entries of AB satisfy the
row-column rule
(AB)ij = ajbij + aiobo; + ... + ainbn;.

As an example, we computed the product of A and B where

L s 12
A = and B = 3 4
7 8 9 5 6
10 11 12
We obtained
22 28
49 64
AB = 76 100
103 136
It is useful to remember that
1 2
AB=| A|3 Al4
5 6

and that any particular entry in AB can be computed using the row-column rule. For
example, the 3,2 entry of AB is

7-2+8-4+9-6=100.

We should discuss some properties of matrix multiplication.

Definition. The n x n (square) matrix

1 0 ... ... 0
0 1 0
I, = :
0 0 ... ... 1

with 1’s down the diagonal and 0’s everywhere else is called the n x n identity matriz.
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Theorem 2. Let A be an m X n matrix, and let B and C be matrices of appropriate sizes.
Then

1. A(BC) = (AB)C

2. A(B+C) = AB + AC

3. (B+C)A =BA +CA

4. r(AB) = (rA)B = A(rB) for any scalar r
5. I,A=A=AI,

Three warnings.
1. AB does not always equal BA. For example, consider

2 1

1 1

A:[ -1 2

| wa B! 2]

2. AB = AC does not necessarily imply that B = C. For example, consider

A:[1 2]’ B:[1

9 4 3 Z], and C:[_l 4].

4 3

3. AB = 0 does not necessarily imply that A = 0 or B = 0. For example, consider

A:B:[_2 A ]

-1 2

We will occasionally need to use the transpose of a matrix.

Definition. Given an m x n matrix A, its transpose A7 is the n x m matrix such that

(AT)ij = Aji.
E le. Consider M = L2 3 Then M” =
xample. onsiaer = 4 5 67T . n =
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Theorem 3. Let A and B be matrices whose sizes are appropriate for the following sums
and products. Then

1.

(

2. (A+B)"=A"+B”
3. (
(

4.

Inverses of square matrices
Now we examine the question of whether or not a square matrix has a multiplicative inverse.
Definition. Suppose that A is an » X n matrix (a square matrix). If there exists an

n X n matrix B such that
AB=1 and BA =1,

then we say that A is invertible and that B is the inverse of A.

Note: If such a matrix B exists, then it is unique.

Examples.

1. Consider A; = [ ? i ]



MA 242 October 2, 2012

2. Consider A, = [ ; i ]

A typical square matrix A has a multiplicative inverse which we denote by A™!, so

AAT =1 and A'A =1

However, there are infinitely many square matrices that do not have inverses.
For 2 x 2 matrices, there is a simple formula for A~

Theorem 4. Consider the 2 x 2 matrix

If ad — bc # 0, then A is invertible and

1 d —b
Al = )
ad — be [ —C CL]

If ad — bc = 0, then A is not invertible.
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Here are some basic properties of inverses.

Theorem 6.
1. If A is an invertible matrix, then A" is invertible and (A™')~! = A.

2. If A and B are n X n invertible matrices, then AB is invertible. Moreover,
(AB)"'=B 'A%

3. If A is an invertible matrix, then A” is invertible, and (A")™! = (A™")T,

Elementary matrices and computing inverses

Definition. An elementary matrix is a matrix that is obtained from the identity matrix by
applying exactly one elementary row operation.

There are three types of elementary row operations—one for each type of row operation.
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What happens to a matrix if we multiply it by an elementary matrix?

Example.

= O O

_ O




