Subspaces associated to a matrix
There are three important subspaces associated to an $m \times n$ matrix \mathbf{A}. Let $\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}$ represent the columns of \mathbf{A}. That is,

$$
\mathbf{A}=\left[\begin{array}{l|l|l|l}
\mathbf{c}_{1} & \mathbf{c}_{2} & \ldots & \mathbf{c}_{n}
\end{array}\right] .
$$

These column vectors are vectors in \mathbb{R}^{m}.

Let $\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}$ represent the rows of \mathbf{A}. That is,

$$
\mathbf{A}=\left[\begin{array}{c}
\mathbf{r}_{1} \\
\hline \frac{\mathbf{r}_{2}}{\vdots} \\
\hline \mathbf{r}_{m}
\end{array}\right]
$$

These row vectors are vectors in \mathbb{R}^{n}.

The column space of \mathbf{A}. The column space of \mathbf{A} is the span of the columns of \mathbf{A}. We write

$$
\operatorname{Col} \mathbf{A}=\operatorname{Span}\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}
$$

The row space of \mathbf{A}. The row space of \mathbf{A} is the span of the rows of \mathbf{A}. We write

$$
\text { Row } \mathbf{A}=\operatorname{Span}\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}
$$

The null space of \mathbf{A}. The null space of \mathbf{A} is the set of all vectors \mathbf{x} in \mathbb{R}^{n} such that

$$
A x=0
$$

The null space of \mathbf{A} is denoted by $\operatorname{Nul} \mathbf{A}$.

Theorem. Let \mathbf{A} be an $m \times n$ matrix. The column space of \mathbf{A} is a subspace of \mathbb{R}^{m}, and the null space and the row space of \mathbf{A} are subspaces of \mathbb{R}^{n}.

The consistency of a system of linear equations can be viewed as a statement about the column space of the coefficient matrix.

Fact. The linear system $\mathbf{A x}=\mathbf{b}$ is consistent if and only if \mathbf{b} is an element of the column space of \mathbf{A}.

Here is how Lay (p. 204) contrasts $\operatorname{Nul} \mathbf{A}$ and $\operatorname{Col} \mathbf{A}$ for an $m \times n$ matrix A:

Nul A

1. Nul \mathbf{A} is a subspace of \mathbb{R}^{n}.
2. Nul A is implicitly defined; that is, you are given only a condition $(\mathbf{A x}=\mathbf{0})$ that vectors in Nul A must satisfy.
3. It takes time to find vectors in $\mathrm{Nul} \mathbf{A}$. Row operations on $\left[\begin{array}{ll}\mathbf{A} & \mathbf{0}\end{array}\right]$ are required.
4. There is no obvious relation between Nul A and the entries in \mathbf{A}.
5. A typical vector \mathbf{v} in $\operatorname{Nul} \mathbf{A}$ has the property that $\mathbf{A v}=\mathbf{0}$.
6. Given a specific vector \mathbf{v}, it is easy to tell if \mathbf{v} is in Nul A. Just compute Av.
7. Nul $\mathbf{A}=\{\mathbf{0}\}$ if and only if the equation $\mathbf{A x}=\mathbf{0}$ has only the trivial solution.
8. Nul $\mathbf{A}=\{\mathbf{0}\}$ if and only if the linear transformation $\mathbf{x} \mapsto \mathbf{A x}$ is one-to-one.

$\operatorname{Col} \mathbf{A}$

1. $\mathrm{Col} \mathbf{A}$ is a subspace of \mathbb{R}^{m}.
2. $\mathrm{Col} \mathbf{A}$ is explicitly defined; that is, you are told how to build vectors in $\operatorname{Col} \mathbf{A}$.
3. It is easy to find vectors in $\mathrm{Col} \mathbf{A}$. The columns of \mathbf{A} are displayed; others are formed from them.
4. There is an obvious relation between $\mathrm{Col} \mathbf{A}$ and the entries in \mathbf{A}, since each column of \mathbf{A} is in $\operatorname{Col} \mathbf{A}$.
5. A typical vector \mathbf{v} in $\operatorname{Col} \mathbf{A}$ has the property that the equation $\mathbf{A x}=\mathbf{v}$ is consistent.
6. Given a specific vector \mathbf{v}, it may take time to tell if \mathbf{v} is in $\mathrm{Col} \mathbf{A}$. Row operations on $\left[\begin{array}{ll}\mathbf{A} & \mathbf{v}\end{array}\right]$ are required.
7. $\mathrm{Col} \mathbf{A}=\mathbb{R}^{m}$ if and only if the equation $\mathbf{A x}=\mathbf{b}$ has a solution for every b in \mathbb{R}^{m}.
8. $\operatorname{Col} \mathbf{A}=\mathbb{R}^{m}$ if and only if the linear transformation $\mathbf{x} \mapsto \mathbf{A x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}.

Item 8 in both lists suggest two subspaces that are intimately connected with any linear transformation from one vector space to another.

Definition. A transformation $L: V_{1} \rightarrow V_{2}$ from a vector space V_{1} to a vector space V_{2} is linear if

1. $L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)$ for all vectors \mathbf{v}_{1} and \mathbf{v}_{2} in V_{1}, and
2. $L(r \mathbf{v})=r L(\mathbf{v})$ for all \mathbf{v} in V_{1} and all r in \mathbb{R}.

Example. Let V_{1} be the vector space of all continuously differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and let V_{2} be the vector space of all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$. The operation of differentiation is a linear transformation from V_{1} to V_{2}. That is, the transformation $D: V_{1} \rightarrow V_{2}$ given by

$$
D(f)=f^{\prime}
$$

is a linear transformation.

Associated to any linear transformation are two important subspaces.
Definition. The kernel of $L: V_{1} \rightarrow V_{2}$ is the subset of \mathbf{V}_{1} given by

$$
\left\{\mathbf{v}_{1} \mid L\left(\mathbf{v}_{1}\right)=\mathbf{0}\right\}
$$

The range of L is the subset of \mathbf{V}_{2} given by

$$
\left\{\mathbf{v}_{2} \mid L\left(\mathbf{v}_{1}\right)=\mathbf{v}_{2} \text { for some } \mathbf{v}_{1} \text { in } V_{1}\right\}
$$

Fact. Both the kernel and the range of a linear transformation are subspaces. The kernel is a subspace of V_{1}, and the range is a subspace of V_{2}.

For a matrix transformation from \mathbb{R}^{n} to \mathbb{R}^{m} determined by the matrix \mathbf{A}, its range is $\mathrm{Col} \mathbf{A}$, and its kernel is $\operatorname{Nul} \mathbf{A}$.

Example. What are the kernel and range of the transformation $p: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ determined by the matrix

$$
\frac{1}{3}\left[\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] ?
$$

(This example was first introduced on September 20.)

Example. What are the kernel and the range of the differentiation transformation D mentioned above?

If we are careful, we can also use integration to define a linear transformation.
Example. Given a polynomial $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$ in \mathbb{P}_{n} (the vector space of all polynomial functions of degree at most n), we can define

$$
I(p)=\int_{0}^{x} p(t) d t=a_{n} \frac{x^{n+1}}{n+1}+a_{n-1} \frac{x^{n}}{n}+\ldots+a_{0} x .
$$

The map $I: \mathbb{P}_{n} \rightarrow \mathbb{P}_{n+1}$ is a linear transformation. What are its kernel and range?

