Subspaces associated to a matrix

There are three important subspaces associated to an $m \times n$ matrix **A**. Let $\mathbf{c}_1, \ldots, \mathbf{c}_n$ represent the columns of **A**. That is,

$$\mathbf{A} = \left[\begin{array}{c|c} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{array}
ight].$$

These column vectors are vectors in \mathbb{R}^m .

Let $\mathbf{r}_1, \ldots, \mathbf{r}_m$ represent the rows of **A**. That is,

$$\mathbf{A} = egin{bmatrix} \mathbf{r}_1 & & \ \hline & \mathbf{r}_2 & \ \hline & & \ \hline & & \ \hline & & \mathbf{r}_m \end{bmatrix}.$$

These row vectors are vectors in \mathbb{R}^n .

The column space of A. The column space of A is the span of the columns of A. We write

Col
$$\mathbf{A} = \operatorname{Span} \{ \mathbf{c}_1, \ldots, \mathbf{c}_n \}.$$

The row space of A. The row space of A is the span of the rows of A. We write

Row
$$\mathbf{A} = \operatorname{Span}\{\mathbf{r}_1, \ldots, \mathbf{r}_m\}.$$

The null space of A. The null space of A is the set of all vectors \mathbf{x} in \mathbb{R}^n such that

Ax = 0.

The null space of **A** is denoted by Nul **A**.

МΔ	242
NIA	Z4Z

Theorem. Let \mathbf{A} be an $m \times n$ matrix. The column space of \mathbf{A} is a subspace of \mathbb{R}^m , and the null space and the row space of \mathbf{A} are subspaces of \mathbb{R}^n .

The consistency of a system of linear equations can be viewed as a statement about the column space of the coefficient matrix.

Fact. The linear system Ax = b is consistent if and only if b is an element of the column space of A.

Here is how Lay (p. 204) contrasts Nul A and Col A for an $m \times n$ matrix A:

Nul \mathbf{A}

- 1. Nul **A** is a subspace of \mathbb{R}^n .
- 2. Nul A is implicitly defined; that is, you are given only a condition (Ax = 0) that vectors in Nul A must satisfy.
- It takes time to find vectors in Nul A. Row operations on [A 0] are required.
- 4. There is no obvious relation between Nul **A** and the entries in **A**.
- 5. A typical vector \mathbf{v} in Nul \mathbf{A} has the property that $\mathbf{A}\mathbf{v} = \mathbf{0}$.
- 6. Given a specific vector **v**, it is easy to tell if **v** is in Nul **A**. Just compute **Av**.
- 7. Nul $\mathbf{A} = \{\mathbf{0}\}$ if and only if the equation $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 8. Nul $\mathbf{A} = \{\mathbf{0}\}$ if and only if the linear transformation $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ is one-to-one.

$\operatorname{Col}\,\mathbf{A}$

- 1. Col **A** is a subspace of \mathbb{R}^m .
- 2. Col **A** is explicitly defined; that is, you are told how to build vectors in Col **A**.
- 3. It is easy to find vectors in Col **A**. The columns of **A** are displayed; others are formed from them.
- There is an obvious relation between Col A and the entries in A, since each column of A is in Col A.
- 5. A typical vector \mathbf{v} in Col \mathbf{A} has the property that the equation $\mathbf{A}\mathbf{x} = \mathbf{v}$ is consistent.
- 6. Given a specific vector \mathbf{v} , it may take time to tell if \mathbf{v} is in Col \mathbf{A} . Row operations on $[\mathbf{A} \quad \mathbf{v}]$ are required.
- 7. Col $\mathbf{A} = \mathbb{R}^m$ if and only if the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^m .
- 8. Col $\mathbf{A} = \mathbb{R}^m$ if and only if the linear transformation $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^m .

Item 8 in both lists suggest two subspaces that are intimately connected with any linear transformation from one vector space to another.

Definition. A transformation $L: V_1 \to V_2$ from a vector space V_1 to a vector space V_2 is linear if

- 1. $L(\mathbf{v}_1 + \mathbf{v}_2) = L(\mathbf{v}_1) + L(\mathbf{v}_2)$ for all vectors \mathbf{v}_1 and \mathbf{v}_2 in V_1 , and
- 2. $L(r\mathbf{v}) = rL(\mathbf{v})$ for all \mathbf{v} in V_1 and all r in \mathbb{R} .

Example. Let V_1 be the vector space of all continuously differentiable functions $f : \mathbb{R} \to \mathbb{R}$ and let V_2 be the vector space of all continuous functions $f : \mathbb{R} \to \mathbb{R}$. The operation of differentiation is a linear transformation from V_1 to V_2 . That is, the transformation $D: V_1 \to V_2$ given by

$$D(f) = f'$$

is a linear transformation.

Associated to any linear transformation are two important subspaces.

Definition. The kernel of $L: V_1 \to V_2$ is the subset of \mathbf{V}_1 given by

$$\{\mathbf{v}_1 \mid L(\mathbf{v}_1) = \mathbf{0}\}.$$

The range of L is the subset of \mathbf{V}_2 given by

 $\{\mathbf{v}_2 \,|\, L(\mathbf{v}_1) = \mathbf{v}_2 \text{ for some } \mathbf{v}_1 \text{ in } V_1 \}.$

Fact. Both the kernel and the range of a linear transformation are subspaces. The kernel is a subspace of V_1 , and the range is a subspace of V_2 .

MA 242

For a matrix transformation from \mathbb{R}^n to \mathbb{R}^m determined by the matrix **A**, its range is Col **A**, and its kernel is Nul **A**.

Example. What are the kernel and range of the transformation $p : \mathbb{R}^3 \to \mathbb{R}^3$ determined by the matrix

$$\frac{1}{3} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}?$$

(This example was first introduced on September 20.)

Example. What are the kernel and the range of the differentiation transformation D mentioned above?

If we are careful, we can also use integration to define a linear transformation.

Example. Given a polynomial $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$ in \mathbb{P}_n (the vector space of all polynomial functions of degree at most n), we can define

$$I(p) = \int_0^x p(t) dt = a_n \frac{x^{n+1}}{n+1} + a_{n-1} \frac{x^n}{n} + \ldots + a_0 x.$$

The map $I: \mathbb{P}_n \to \mathbb{P}_{n+1}$ is a linear transformation. What are its kernel and range?