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Subspaces associated to a matrix

There are three important subspaces associated to an m × n matrix A. Let c1, . . . , cn
represent the columns of A. That is,

A =

 c1 c2 . . . cn

 .
These column vectors are vectors in Rm.

Let r1, . . . , rm represent the rows of A. That is,

A =


r1

r2

...
rm

 .

These row vectors are vectors in Rn.

The column space of A. The column space of A is the span of the columns of A. We
write

Col A = Span{c1, . . . , cn}.

The row space of A. The row space of A is the span of the rows of A. We write

Row A = Span{r1, . . . , rm}.

The null space of A. The null space of A is the set of all vectors x in Rn such that

Ax = 0.

The null space of A is denoted by Nul A.
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Theorem. Let A be an m × n matrix. The column space of A is a subspace of Rm, and
the null space and the row space of A are subspaces of Rn.

The consistency of a system of linear equations can be viewed as a statement about the
column space of the coefficient matrix.

Fact. The linear system Ax = b is consistent if and only if b is an element of the column
space of A.
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Here is how Lay (p. 204) contrasts Nul A and Col A for an m× n matrix A:

Nul A Col A

1. Nul A is a subspace of Rn.

2. Nul A is implicitly defined; that is, you
are given only a condition (Ax = 0)
that vectors in Nul A must satisfy.

3. It takes time to find vectors in Nul A.
Row operations on [A 0] are required.

4. There is no obvious relation between
Nul A and the entries in A.

5. A typical vector v in Nul A has the
property that Av = 0.

6. Given a specific vector v, it is easy to
tell if v is in Nul A. Just compute Av.

7. Nul A = {0} if and only if the equation
Ax = 0 has only the trivial solution.

8. Nul A = {0} if and only if the linear
transformation x 7→ Ax is one-to-one.

1. Col A is a subspace of Rm.

2. Col A is explicitly defined; that is, you
are told how to build vectors in Col A.

3. It is easy to find vectors in Col A. The
columns of A are displayed; others are
formed from them.

4. There is an obvious relation between
Col A and the entries in A, since each
column of A is in Col A.

5. A typical vector v in Col A has the
property that the equation Ax = v is
consistent.

6. Given a specific vector v, it may take
time to tell if v is in Col A. Row oper-
ations on [A v] are required.

7. Col A = Rm if and only if the equation
Ax = b has a solution for every
b in Rm.

8. Col A = R
m if and only if the linear

transformation x 7→ Ax maps
R
n onto Rm.
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Item 8 in both lists suggest two subspaces that are intimately connected with any linear
transformation from one vector space to another.

Definition. A transformation L : V1 → V2 from a vector space V1 to a vector space V2 is
linear if

1. L(v1 + v2) = L(v1) + L(v2) for all vectors v1 and v2 in V1, and

2. L(rv) = rL(v) for all v in V1 and all r in R.

Example. Let V1 be the vector space of all continuously differentiable functions f : R→ R

and let V2 be the vector space of all continuous functions f : R → R. The operation
of differentiation is a linear transformation from V1 to V2. That is, the transformation
D : V1 → V2 given by

D(f) = f ′

is a linear transformation.

Associated to any linear transformation are two important subspaces.

Definition. The kernel of L : V1 → V2 is the subset of V1 given by

{v1 |L(v1) = 0}.

The range of L is the subset of V2 given by

{v2 |L(v1) = v2 for some v1 in V1}.

Fact. Both the kernel and the range of a linear transformation are subspaces. The kernel is
a subspace of V1, and the range is a subspace of V2.
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For a matrix transformation from R
n to Rm determined by the matrix A, its range is Col A,

and its kernel is Nul A.

Example. What are the kernel and range of the transformation p : R3 → R
3 determined

by the matrix

1

3

 2 −1 1
−1 2 1

1 1 2

?

(This example was first introduced on September 20.)
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Example. What are the kernel and the range of the differentiation transformation D
mentioned above?

If we are careful, we can also use integration to define a linear transformation.

Example. Given a polynomial p(x) = anx
n + an−1x

n−1 + . . .+ a0 in Pn (the vector space of
all polynomial functions of degree at most n), we can define

I(p) =
∫ x

0
p(t) dt = an

xn+1

n+ 1
+ an−1

xn

n
+ . . .+ a0x.

The map I : Pn → Pn+1 is a linear transformation. What are its kernel and range?
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