Bases for vector spaces and subspaces
Given a vector space or subspace V, we often find it convenient to express it as the span of a few vectors. A basis for V is a spanning set that contains as few vectors as possible.

Definition. A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is a basis for V if

1. it is linearly independent, and
2. it spans V.

Example. The standard basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ of \mathbb{R}^{n}.

Example. The two vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ form a basis of \mathbb{R}^{2}.

MA 242
November 1, 2012
Example. The set $\left\{x^{3}, x^{2}, x, 1\right\}$ is a basis of \mathbb{P}_{3}.

Example. The set $\left\{x^{3}, x^{3}+x^{2}, x, 1\right\}$ is another basis of \mathbb{P}_{3}.

We need ways of determining bases of vector spaces and their subspaces. The "casting-out procedure" produces a basis from a spanning set.

The casting-out procedure
Given a vector subspace S spanned by $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$, we can obtain a basis B for S by casting out the vectors that are linear combinations of the preceding vectors. More precisely, let

1. $B_{1}=\left\{\mathbf{v}_{1}\right\}$ as long as $\mathbf{v}_{1} \neq \mathbf{0}$, and
2. for $i \geq 2$,
(a) (cast out) $B_{i}=B_{i-1}$ if \mathbf{v}_{i} is in Span B_{i-1}, or
(b) (keep) $B_{i}=B_{i-1} \cup\left\{\mathbf{v}_{i}\right\}$ if \mathbf{v}_{i} is not in Span B_{i-1}.

Then the final result B_{k} is a basis B for S.

Example. Let's apply the casting-out procedure to the set $\left\{x^{3}+1, x, x^{2}, x^{2}-x, 4, x^{3}\right\}$ of polynomials in \mathbb{P}_{3}.

Theorem (similar to The Spanning Set Theorem, Lay, p. 210). Let $S=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$. Then the final result B_{k} of the casting-out procedure applied to $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a basis for S. The proof of the casting-out procedure is posted on the web site, and we will not discuss it in class.

A basis for the column space of a matrix
Example. Find a basis for the column space of

$$
\mathbf{A}=\left[\begin{array}{rrrr}
1 & -2 & 0 & 1 \\
0 & 0 & 3 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Fact: Suppose that \mathbf{A} and \mathbf{B} are row equivalent matrices. Then the linear dependence relations among the columns of \mathbf{A} are the same as the linear dependence relations among the columns of \mathbf{B}.

Why?

Example. Find a basis for the column space of

$$
\mathbf{B}=\left[\begin{array}{rrrr}
1 & -2 & 0 & 1 \\
-1 & 2 & 3 & 1 \\
0 & 0 & -3 & -2
\end{array}\right]
$$

Warning: If you row reduce a matrix \mathbf{B} to a matrix \mathbf{A} in row echelon form, you identify the pivot columns of \mathbf{B}. To find a basis for $\operatorname{Col} \mathbf{B}$, use the pivot columns of \mathbf{B}. Do not use the pivot columns of \mathbf{A}. Row reduction usually changes the column space of a matrix.

