MA 242

Bases for vector spaces and subspaces

Given a vector space or subspace V, we often find it convenient to express it as the span of a few vectors. A basis for V is a spanning set that contains as few vectors as possible.

Definition. A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a *basis* for V if

- 1. it is linearly independent, and
- 2. it spans V.

Example. The standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ of \mathbb{R}^n .

Example. The two vectors $\begin{bmatrix} 1\\0 \end{bmatrix}$ and $\begin{bmatrix} 1\\1 \end{bmatrix}$ form a basis of \mathbb{R}^2 .

_

Example. The set $\{x^3, x^2, x, 1\}$ is a basis of \mathbb{P}_3 .

Example. The set $\{x^3, x^3 + x^2, x, 1\}$ is another basis of \mathbb{P}_3 .

We need ways of determining bases of vector spaces and their subspaces. The "casting-out procedure" produces a basis from a spanning set.

The casting-out procedure

Given a vector subspace S spanned by $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$, we can obtain a basis B for S by casting out the vectors that are linear combinations of the preceding vectors. More precisely, let

- 1. $B_1 = {\mathbf{v}_1}$ as long as $\mathbf{v}_1 \neq \mathbf{0}$, and
- 2. for $i \geq 2$,
 - (a) (cast out) $B_i = B_{i-1}$ if \mathbf{v}_i is in Span B_{i-1} , or
 - (b) (keep) $B_i = B_{i-1} \cup \{\mathbf{v}_i\}$ if \mathbf{v}_i is not in Span B_{i-1} .

Then the final result B_k is a basis B for S.

MA 242	November 1, 2012

Example. Let's apply the casting-out procedure to the set $\{x^3 + 1, x, x^2, x^2 - x, 4, x^3\}$ of polynomials in \mathbb{P}_3 .

Theorem (similar to The Spanning Set Theorem, Lay, p. 210). Let $S = \text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$. Then the final result B_k of the casting-out procedure applied to $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is a basis for S.

The proof of the casting-out procedure is posted on the web site, and we will not discuss it in class.

A basis for the column space of a matrix

Example. Find a basis for the column space of

$$\mathbf{A} = \left[\begin{array}{rrrr} 1 & -2 & 0 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

Fact: Suppose that \mathbf{A} and \mathbf{B} are row equivalent matrices. Then the linear dependence relations among the columns of \mathbf{A} are the same as the linear dependence relations among the columns of \mathbf{B} .

Why?

Example. Find a basis for the column space of

$$\mathbf{B} = \begin{bmatrix} 1 & -2 & 0 & 1 \\ -1 & 2 & 3 & 1 \\ 0 & 0 & -3 & -2 \end{bmatrix}.$$

Warning: If you row reduce a matrix **B** to a matrix **A** in row echelon form, you identify the pivot columns of **B**. To find a basis for Col **B**, use the pivot columns of **B**. Do not use the pivot columns of **A**. Row reduction usually changes the column space of a matrix.