Coordinates relative to a basis

A basis for a vector space produces a coordinate system for that space. For example, consider the two bases

$$\{\mathbf{e}_1, \mathbf{e}_2\}$$
 and $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$

of \mathbb{R}^2 and the vector

$$\mathbf{x} = \begin{bmatrix} 2.4 \\ -1.3 \end{bmatrix} = (2.4)\mathbf{e}_1 + (-1.3)\mathbf{e}_2 = (3.7)\begin{bmatrix} 1 \\ 0 \end{bmatrix} + (-1.3)\begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

The weights in each linear combination are called the coordinates of x relative to the given basis.

Theorem. (Unique Representation Theorem) Let $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then every vector \mathbf{v} in V can be represented uniquely as

$$\mathbf{v} = c_1 \mathbf{b}_1 + \ldots + c_n \mathbf{b}_n.$$

The scalars c_1, \ldots, c_n are called the coordinates of **v** relative to the basis B.

Example. Consider the basis $\{x^3 + 1, x, x^2, 4\}$ of \mathbb{P}_3 that we discussed last class. What are the coordinates of $2x^3 - x^2$ relative to this basis?

Example. Consider the spanning set $\{x^3 + 1, x, x^2, x^2 - x, 4, x^3\}$ for the vector space \mathbb{P}_3 . There are infinitely many ways to write a given element of \mathbb{P}_3 as a linear combination of these vectors. For example, consider the polynomial $2x^3 - x^2$. It can be written as

$$(-1)x^2 + 2x^3.$$

It can also be written as $2(x^3+1)+(-1)x+(-1)(x^2-x)+(-\frac{1}{2})(4)$. Because this spanning set is not linearly independent, there are many ways to represent $2x^3-x^2$ as a linear combination of the vectors.

Why are the coordinates relative to a given basis unique?

Notation. Given the representation $\mathbf{v} = c_1 \mathbf{b}_1 + \ldots + c_n \mathbf{b}_n$ relative to the basis $B = \{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$, then the coordinates can be viewed as a vector in \mathbb{R}^n . This vector is denoted

$$\left[\mathbf{v}\right]_{B} = \left[egin{array}{c} c_{1} \ dots \ c_{n} \end{array}
ight].$$

For example,

$$\left[\left[\begin{array}{c} 2.4 \\ -1.3 \end{array} \right] \right]_{B} = \left[\begin{array}{c} 3.7 \\ -1.3 \end{array} \right]$$

for the basis

$$B = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}.$$

MA 242 November 6, 2012

Example. What is the coordinate vector for the cubic polynomial $2x^3 - x^2$ relative to the basis $B_1 = \{1, x, x^2, x^3\}$ of \mathbb{P}_3 ? What is its coordinate vector relative to the basis $B_2 = \{x^3 + 1, x, x^2, 4\}$?

The change of coordinates matrix for a basis B of \mathbb{R}^n

If $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis of \mathbb{R}^n , then the *B*-coordinates of a vector \mathbf{x} are related to the standard coordinates of \mathbf{x} by the equation

$$\mathbf{x} = c_1 \mathbf{b}_1 + \ldots + c_n \mathbf{b}_n.$$

This equation can be rewritten in terms of matrix multiplication as

$$\mathbf{x} = \mathbf{P}_B \left[egin{array}{c} c_1 \ dots \ c_n \end{array}
ight] = \mathbf{P}_B \left[\mathbf{x}
ight]_B$$

where \mathbf{P}_{B} is the matrix

$$\mathbf{P}_B = \left[egin{array}{ccccc} \mathbf{b}_1 & \mathbf{b}_2 & & \dots & \mathbf{b}_n \end{array}
ight].$$

Since \mathbf{P}_B is invertible, we also have $[\mathbf{x}]_B = (\mathbf{P}_B)^{-1}\mathbf{x}$.

Example. We can double check our computation of the B-coordinates for the vector

$$\mathbf{x} = \begin{bmatrix} 2.4 \\ -1.3 \end{bmatrix}$$

in \mathbb{R}^2 relative to the basis $B = \{\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2\}$ using these matrices.

Coordinate transformations $V \to \mathbb{R}^n$

For any vector space V with basis $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, the B-coordinates define a nice linear transformation from V onto \mathbb{R}^n . It is defined by

$$\mathbf{v}\mapsto [\mathbf{v}]_B$$
.

Theorem. The coordinate transformation $\mathbf{v} \mapsto [\mathbf{v}]_B$ is a one-to-one linear transformation that maps V onto \mathbb{R}^n .

Definition. A one-to-one linear transformation that maps a vector space V onto a vector space W is called an isomorphism between V and W.

From the vector space point of view, two isomorphic vector spaces have the same structure.