MA 242 November 13, 2012

The dimension of a vector space
The number of elements in a basis of a vector space is an important quantity associated with

the space.

In order to be more precise, we need to distinguish between finite-dimensional vector spaces
and infinite-dimensional vector spaces.

Definition. A vector space V is finite dimensional if it contains a finite spanning set.
Otherwise, V is said to be infinite dimensional.

Example. The vector space R™ is spanned by the standard basis {ey,...,e,}. Therefore,
it is finite dimensional.

Example. The vector space P3 of all polynomial functions whose degree is at most three is
spanned by the basis {1, z, 2% x3}. Therefore, it is finite dimensional.

Example. P is the vector space of all polynomial functions of all degrees. It is infinite-
dimensional because it does not contain any finite spanning set. (Why not?)
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Theorem. Let V be a vector space. Any finite spanning set for V has at least as many
elements as any linearly independent subset of V.

Corollary. Any two bases of a finite-dimensional vector space V' have the same number of
elements.
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Definition. The dimension of a finite-dimensional vector space V' is the number of elements
in any basis of V. This nonnegative integer is denoted dim V.

Examples.
1. dimR" =n

2. Let P be the plane x; + 25 + 23 = 0 in R3. A basis is

1 0
~1, 1
0 ~1

Hence, dim P = 2.
3. dimP; =4

4. dim Myy3 =6

Here are a couple of other consequences of the notion of dimension.

Theorem. If dimV = n, then any set in V' with more than n vectors must be linearly
dependent.

Theorem. If H is a subspace of V, then dim H < dim V. In fact, any basis of H can be
expanded to a basis of V.
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Suppose that A is an m x n matrix. How can we determine the dimensions of Col A and
Nul A?

Example. Let
1 -3 4 -1 9
-2 6 -6 —1 -10
-3 9 -6 -6 -3
3 -9 4 9 0

What relationship is there between the dimensions of Col A and Nul A?
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The rank of a matrix

Recall that the row space of an m x n matrix A is the subspace of R™ spanned by the rows
of A.

Theorem. If A and B are row equivalent matrices, then Row A = Row B.

How do we find a basis for Row A?

Example. We know that the matrices

1 -3 4 -1 9 1 -3 4 -1 9
2 6 -6 —1 —10 0 0 2 -3 8
A=l 3 9 6 6 -3 and B=1 ", 4 4 o 3
3 -9 4 9 0 O 0 0 0 0

are row equivalent.
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For an m x n matrix A, we saw that
dim(Col A) + dim(Nul A) = n.

How is the dimension of Row A related to these numbers?

Definition. The rank of an m x n matrix A is the dimension of its column space. This
dimension also equals the dimension of Row A.

Example. Suppose that a homogeneous linear system of 10 equations in 6 unknowns has
two linearly independent solutions and all other solutions are linear combinations of these.
Can the solution set be described with fewer equations? If so, how many?
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More equivalent conditions can be added to the Invertible Matrix Theorem.

Theorem. Let A be an n x n matrix. Then the following seven statements are equivalent.

1.
2.

7.

The matrix A is invertible.

The columns of A form a basis of R".
Col A =R"

dim(Col A) =n

. rank(A) =n

Nul A = {0}
dim(Nul A) =0

Since A is invertible if and only if AT is invertible, any statement regarding the columns
of A in the Invertible Matrix Theorem can be replaced by a statement regarding the rows

of A.

Rank and linear transformations

Consider a linear transformation L : R” — R™ and let A be its standard matrix representa-
tion. How is the rank of A related to the mapping properties of L?

Note: The range of L is the column space of A in R™. Consequently, rank(A) is the
dimension of the range of L. This number is often called the rank of L.

Example. Consider a rotation R : R?> — R%. What is its rank?

Such a transformation is said to be of “full rank.”
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Example. What is the rank of the linear transformation P : R? — R? that projects R? onto
the line 29 = —a17?

Example. Consider the linear transformation p : R?* — R3 determined by the matrix

1 2 -1 1
P:§ -1 2 1
1 1 2

(This example was first introduced on September 20 and discussed again on October 30.)
What is its rank?
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Theorem. Let A and B be transformations/matrices such that A is m xn and B is n x p.
Then
rank(AB) < min{rank(A),rank(B)}.



