More on the dot product

**Definition.** Given

$$\mathbf{u} = \left[ egin{array}{c} u_1 \\ u_2 \\ \vdots \\ u_n \end{array} 
ight] \qquad ext{and} \qquad \mathbf{v} = \left[ egin{array}{c} v_1 \\ v_2 \\ \vdots \\ v_n \end{array} 
ight]$$

in  $\mathbb{R}^n$ , then  $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$ .

**Theorem 1.** Let  $\mathbf{u}, \mathbf{v}$ , and  $\mathbf{w}$  be vectors in  $\mathbb{R}^n$ , and let c be a scalar. Then

- (a)  $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- (b)  $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- (c)  $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$
- (d)  $\mathbf{u} \cdot \mathbf{u} \geq 0$ , and
- (e)  $\mathbf{u} \cdot \mathbf{u} = 0$  if and only if  $\mathbf{u} = \mathbf{0}$

**Definition.** The length (or norm) of a vector  $\mathbf{v}$  in  $\mathbb{R}^n$  is  $||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$ .

Note that  $||r\mathbf{v}|| = |r| ||\mathbf{v}||$ .

Given  $\mathbf{v} \neq \mathbf{0}$ , we normalize  $\mathbf{v}$  by computing the vector  $\mathbf{u} = \frac{1}{||\mathbf{v}||} \mathbf{v}$ .

If we think of two vectors  $\mathbf{u}$  and  $\mathbf{v}$  as points in  $\mathbb{R}^n$ , then we define the distance between  $\mathbf{u}$  and  $\mathbf{v}$  as

$$\operatorname{dist}(\mathbf{u},\mathbf{v}) = ||\mathbf{u} - \mathbf{v}||.$$

What about angles? Let's start with right angles.

**Definition.** Two vectors  $\mathbf{u}$  and  $\mathbf{v}$  are orthogonal if  $\mathbf{u} \cdot \mathbf{v} = 0$ .

MA 242 November 29, 2012

We can use the Law of Cosines to derive a more exact relationship between angles and the dot product.



## Orthogonal complements

Given a subspace S of  $\mathbb{R}^n$ , we can consider the set of all vectors that are orthogonal to all vectors in S. For example, a plane through the origin in  $\mathbb{R}^3$  can be described by one homogeneous linear equation

$$a_1x_1 + a_2x_2 + a_3x_3 = 0.$$



**Definition.** Given a subspace S of  $\mathbb{R}^n$ , its orthogonal complement  $S^{\perp}$  is the set

$$\{\mathbf{v} \mid \mathbf{v} \cdot \mathbf{w} = 0 \text{ for all } \mathbf{w} \text{ in } S\}.$$

## Examples.

- 1. The orthogonal complement of a line through the origin in  $\mathbb{R}^3$  is a plane through the origin.
- 2. The orthogonal complement of a plane through the origin in  $\mathbb{R}^3$  is a line through the origin.
- 3. Consider an  $m \times n$  matrix

$$\mathbf{A} = egin{bmatrix} & \mathbf{r}_1 & & & \ \hline & \mathbf{r}_2 & & & \ \hline & & dots & & \ \hline & & dots & & \ \hline & & \mathbf{r}_m & & \end{bmatrix}.$$

What can you say about a vector  $\mathbf{v}$  in  $\mathbb{R}^n$  that is orthogonal to all of the rows of  $\mathbf{A}$ ?

**Theorem.** Let S be a subspace of  $\mathbb{R}^n$  and let  $S^{\perp}$  be its orthogonal complement. Then

- 1.  $S^{\perp}$  is a subspace of  $\mathbb{R}^n$ ,
- $2. \dim(S^{\perp}) = n \dim(S),$
- 3.  $(S^{\perp})^{\perp} = S$ , and
- 4. every vector  $\mathbf{v}$  in  $\mathbb{R}^n$  can be written uniquely as  $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ , where  $\mathbf{v}_1$  is in S and  $\mathbf{v}_2$  is in  $S^{\perp}$ .

It helps to have a little more theory before we verify properties 2, 3, and 4, but we can verify property 1 directly from the definition.

MA 242 November 29, 2012

Solution sets of linear equations viewed in terms of Gilbert Strang's figure

Here's a diagram due to Gilbert Strang (MIT) that helps us understand the relationships among various subspaces associated to an  $m \times n$  matrix **A**. (Lay has a similar figure that illustrates the same idea at the top of page 335 of your text.)

Suppose that the linear system  $\mathbf{A}\mathbf{x} = \mathbf{b}$  is consistent for some  $\mathbf{b}$  in  $\mathbb{R}^m$ .



This figure is one way of remembering the fact that the solution set of a consistent nonhomogeneous system consists of the sum of one particular solution of the nonhomogeneous system and the general solution of the associated homogeneous system (Theorem 6 in Chapter 1). It also suggests the second part of Exercise 23 in Section 6.3. That is, there is a unique  $\mathbf{p}$  in Row  $\mathbf{A}$  such that

$$Ap = b$$
.

Orthogonal sets

**Definition.** A set of vectors  $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$  is an orthogonal set if  $\mathbf{v}_i \cdot \mathbf{v}_j = 0$  for all  $i \neq j$ .

Example 1. Consider the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ -1 \\ 4 \\ 5 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 0 \\ -1 \\ 1 \\ -1 \end{bmatrix}, \qquad \text{and} \qquad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 3 \\ 2 \\ -1 \end{bmatrix}.$$

**Theorem.** Suppose that  $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$  is an orthogonal set of nonzero vectors.

- 1. If  $\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k$ , then the weights  $c_i$  are given by  $c_i = \frac{\mathbf{u} \cdot \mathbf{v}_i}{\mathbf{v}_i \cdot \mathbf{v}_i}$ .
- 2. The set  $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$  is linearly independent.