$\mathrm{MA}\ 242$

Orthogonal sets

Definition. A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an orthogonal set if $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ for all $i \neq j$.

Example 1. Consider the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 2\\-1\\4\\5 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0\\-1\\1\\-1 \end{bmatrix}, \quad \text{and} \quad \mathbf{v}_3 = \begin{bmatrix} 0\\3\\2\\-1 \end{bmatrix}.$$

Theorem. Suppose that $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an orthogonal set of nonzero vectors.

- 1. If $\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k$, then the weights c_i are given by $c_i = \frac{\mathbf{u} \cdot \mathbf{v}_i}{\mathbf{v}_i \cdot \mathbf{v}_i}$.
- 2. The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly independent.

 $\mathrm{MA}~242$

Example. Using the orthogonal set $\{v_1, v_2, v_3\}$ in Example 1, apply this theorem to the vector

$$\mathbf{u} = \begin{bmatrix} -3\\ -2\\ -5\\ -9 \end{bmatrix}.$$

$\mathrm{MA}\ 242$

Orthonormal sets

Definition. A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is orthonormal if it is orthogonal and $\mathbf{v}_i \cdot \mathbf{v}_i = 1$ for all i.

Example. Consider the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 2\\ -1\\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1\\ 2\\ 2 \end{bmatrix}, \quad \text{and} \quad \mathbf{v}_3 = \begin{bmatrix} 2\\ 2\\ -1 \end{bmatrix}.$$

We can use matrices to express the fact that a set is orthogonal or orthonormal.

Theorem. Let A be an $n \times n$ matrix. The following three conditions are equivalent.

- 1. $\mathbf{A}^{T} = \mathbf{A}^{-1}$
- 2. The columns of **A** form an orthonormal basis of \mathbb{R}^n .
- 3. The rows of **A** form an orthonormal basis of \mathbb{R}^n .

Definition. Whenever a matrix satisfies the above theorem, it is said to be an orthogonal matrix.

Example. We can use the orthonormal basis of \mathbb{R}^3 given above to produce an orthogonal matrix.

Why are orthogonal matrices special?

 $\mathrm{MA}\ 242$

Orthogonal projection

How do we project a vector \mathbf{v} onto a subspace W?

Theorem. (Orthogonal Decomposition Theorem)

1. Each vector \mathbf{v} in \mathbb{R}^n can be written uniquely as

$$\mathbf{v} = \mathbf{w} + \mathbf{w}^{\perp},$$

where \mathbf{w} is in W and \mathbf{w}^{\perp} is in W^{\perp} .

2. Given an orthogonal basis $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ of W, then

$$\operatorname{proj}_{W} \mathbf{v} \equiv \mathbf{w} = \left(\frac{\mathbf{v} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}}\right) \mathbf{w}_{1} + \ldots + \left(\frac{\mathbf{v} \cdot \mathbf{w}_{k}}{\mathbf{w}_{k} \cdot \mathbf{w}_{k}}\right) \mathbf{w}_{k}$$

and $\mathbf{w}^{\perp} = \mathbf{v} - \mathbf{w}$.

Note: Since the two vectors \mathbf{w} and \mathbf{w}^{\perp} are unique, they do not depend on the orthogonal basis of W that we use to compute them.

 $\ensuremath{\mathbf{Example.}}$ Consider the orthogonal set

$$\mathbf{w}_1 = \begin{bmatrix} 2\\-1\\4\\5 \end{bmatrix}, \quad \mathbf{w}_2 = \begin{bmatrix} 0\\-1\\1\\-1 \end{bmatrix}, \quad \text{and} \quad \mathbf{w}_3 = \begin{bmatrix} 0\\3\\2\\-1 \end{bmatrix}.$$

Let W be $\text{Span}\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$. Compute $\text{proj}_W \mathbf{v}$ for

$$\mathbf{v} = \begin{bmatrix} -45\\ -4\\ 3\\ 1 \end{bmatrix}.$$

_

Why is the Orthogonal Decomposition Theorem true?

Important consequence: If we want to find the distance of a vector ${\bf v}$ to a subspace W, then we compute

$$||\mathbf{w}^{\perp}|| = ||\mathbf{v} - \operatorname{proj}_W \mathbf{v}||.$$

Example. Find the point closest to

$$\mathbf{v} = \begin{bmatrix} 3\\ -1\\ 1\\ 13 \end{bmatrix}$$

in the subspace \boldsymbol{W} spanned by the two vectors

$$\mathbf{w}_1 = \begin{bmatrix} 1\\ -2\\ -1\\ 2 \end{bmatrix} \quad \text{and} \quad \mathbf{w}_2 = \begin{bmatrix} -4\\ 1\\ 0\\ 3 \end{bmatrix}.$$