Orthogonal sets
Definition. A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is an orthogonal set if $\mathbf{v}_{i} \cdot \mathbf{v}_{j}=0$ for all $i \neq j$.
Example 1. Consider the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
2 \\
-1 \\
4 \\
5
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
0 \\
-1 \\
1 \\
-1
\end{array}\right], \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{r}
0 \\
3 \\
2 \\
-1
\end{array}\right] .
$$

Theorem. Suppose that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is an orthogonal set of nonzero vectors.

1. If $\mathbf{u}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{k} \mathbf{v}_{k}$, then the weights c_{i} are given by $c_{i}=\frac{\mathbf{u} \cdot \mathbf{v}_{i}}{\mathbf{v}_{i} \cdot \mathbf{v}_{i}}$.
2. The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent.

MA 242
December 4, 2012
Example. Using the orthogonal set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ in Example 1, apply this theorem to the vector

$$
\mathbf{u}=\left[\begin{array}{l}
-3 \\
-2 \\
-5 \\
-9
\end{array}\right]
$$

MA 242
Orthonormal sets
Definition. A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is orthonormal if it is orthogonal and $\mathbf{v}_{i} \cdot \mathbf{v}_{i}=1$ for all i.

Example. Consider the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
2 \\
-1 \\
2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right], \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{r}
2 \\
2 \\
-1
\end{array}\right] .
$$

We can use matrices to express the fact that a set is orthogonal or orthonormal.

Theorem. Let \mathbf{A} be an $n \times n$ matrix. The following three conditions are equivalent.

1. $\mathbf{A}^{T}=\mathbf{A}^{-1}$
2. The columns of \mathbf{A} form an orthonormal basis of \mathbb{R}^{n}.
3. The rows of \mathbf{A} form an orthonormal basis of \mathbb{R}^{n}.

Definition. Whenever a matrix satisfies the above theorem, it is said to be an orthogonal matrix.
Example. We can use the orthonormal basis of \mathbb{R}^{3} given above to produce an orthogonal matrix.

Why are orthogonal matrices special?

Orthogonal projection
How do we project a vector \mathbf{v} onto a subspace W ?
Theorem. (Orthogonal Decomposition Theorem)

1. Each vector \mathbf{v} in \mathbb{R}^{n} can be written uniquely as

$$
\mathbf{v}=\mathbf{w}+\mathbf{w}^{\perp}
$$

where \mathbf{w} is in W and \mathbf{w}^{\perp} is in W^{\perp}.
2. Given an orthogonal basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ of W, then

$$
\operatorname{proj}_{W} \mathbf{v} \equiv \mathbf{w}=\left(\frac{\mathbf{v} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}}\right) \mathbf{w}_{1}+\ldots+\left(\frac{\mathbf{v} \cdot \mathbf{w}_{k}}{\mathbf{w}_{k} \cdot \mathbf{w}_{k}}\right) \mathbf{w}_{k}
$$

$$
\text { and } \mathbf{w}^{\perp}=\mathbf{v}-\mathbf{w}
$$

Note: Since the two vectors \mathbf{w} and \mathbf{w}^{\perp} are unique, they do not depend on the orthogonal basis of W that we use to compute them.

Example. Consider the orthogonal set

$$
\mathbf{w}_{1}=\left[\begin{array}{r}
2 \\
-1 \\
4 \\
5
\end{array}\right], \quad \mathbf{w}_{2}=\left[\begin{array}{r}
0 \\
-1 \\
1 \\
-1
\end{array}\right], \quad \text { and } \quad \mathbf{w}_{3}=\left[\begin{array}{r}
0 \\
3 \\
2 \\
-1
\end{array}\right] .
$$

Let W be $\operatorname{Span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$. Compute $\operatorname{proj}_{W} \mathbf{v}$ for

$$
\mathbf{v}=\left[\begin{array}{r}
-45 \\
-4 \\
3 \\
1
\end{array}\right]
$$

MA 242
December 4, 2012
Why is the Orthogonal Decomposition Theorem true?

Important consequence: If we want to find the distance of a vector \mathbf{v} to a subspace W, then we compute

$$
\left\|\mathbf{w}^{\perp}\right\|=\left\|\mathbf{v}-\operatorname{proj}_{W} \mathbf{v}\right\| .
$$

Example. Find the point closest to

$$
\mathbf{v}=\left[\begin{array}{r}
3 \\
-1 \\
1 \\
13
\end{array}\right]
$$

in the subspace W spanned by the two vectors

$$
\mathbf{w}_{1}=\left[\begin{array}{r}
1 \\
-2 \\
-1 \\
2
\end{array}\right] \quad \text { and } \quad \mathbf{w}_{2}=\left[\begin{array}{r}
-4 \\
1 \\
0 \\
3
\end{array}\right]
$$

