MA 242
Projection matrices
Theorem. If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthonormal basis for a subspace W, then

$$
\operatorname{proj}_{W} \mathbf{v}=\left(\mathbf{v} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\ldots+\left(\mathbf{v} \cdot \mathbf{u}_{k}\right) \mathbf{u}_{k}
$$

If

$$
\mathbf{U}=\left[\begin{array}{l|l|l|l}
\mathbf{u}_{1} & \mathbf{u}_{2} & \ldots & \mathbf{u}_{k}
\end{array}\right]
$$

then $\operatorname{proj}_{W} \mathbf{v}=\mathbf{U U}^{T} \mathbf{v}$.
The matrix $\mathbf{U U}^{T}$ is called the projection matrix for the subspace W. It does not depend on the choice of orthonormal basis.

Example. Let's repeat the calculation I mentioned at the end of last class. Let

$$
\mathbf{v}=\left[\begin{array}{r}
3 \\
-1 \\
1 \\
13
\end{array}\right], \quad \mathbf{w}_{1}=\left[\begin{array}{r}
1 \\
-2 \\
-1 \\
2
\end{array}\right], \quad \text { and } \quad \mathbf{w}_{2}=\left[\begin{array}{r}
-4 \\
1 \\
0 \\
3
\end{array}\right] .
$$

Using the Orthogonal Decomposition Theorem, we computed the projection of \mathbf{v} onto $W=$ $\operatorname{Span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$. We got

$$
\operatorname{proj}_{W} \mathbf{v}=3 \mathbf{w}_{1}+\mathbf{w}_{2}=\left[\begin{array}{r}
-1 \\
-5 \\
-3 \\
9
\end{array}\right]
$$

Let

$$
\mathbf{U}=\left[\begin{array}{cc}
\frac{1}{\sqrt{10}} & -\frac{4}{\sqrt{26}} \\
-\frac{2}{\sqrt{10}} & \frac{1}{\sqrt{26}} \\
-\frac{1}{\sqrt{10}} & 0 \\
\frac{2}{\sqrt{10}} & \frac{3}{\sqrt{26}}
\end{array}\right]
$$

Then

$$
\mathbf{U U}^{T}=\mathbf{P}=\left[\begin{array}{rrrr}
\frac{93}{130} & -\frac{23}{65} & -\frac{1}{10} & -\frac{17}{65} \\
-\frac{23}{65} & \frac{57}{130} & \frac{1}{5} & -\frac{37}{130} \\
-\frac{1}{10} & \frac{1}{5} & \frac{1}{10} & -\frac{1}{5} \\
-\frac{17}{65} & -\frac{37}{130} & -\frac{1}{5} & \frac{97}{130}
\end{array}\right]
$$

Using the computer, we see that $\mathbf{P}^{2}=\mathbf{P}$.

The Gram-Schmidt Process
This procedure produces an orthogonal (or orthonormal) basis from a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ of a subspace W. It is an inductive procedure.

We work with the subspaces

$$
S_{l}=\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{l}\right\}
$$

The orthogonal basis for W based on this procedure applied to this basis is denoted $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{l}\right\}$.

1. Let $\mathbf{v}_{1}=\mathbf{x}_{1}$.
2. Let $\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}$.
3. Let $\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}$.
etc.

Example. Apply the Gram-Schmidt process to the basis

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right], \quad \text { and } \quad \mathbf{x}_{3}=\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right]
$$

Example. Let's compute the projection matrix \mathbf{P} for orthogonal projection onto the plane $x_{1}+x_{2}-x_{3}=0$ in \mathbb{R}^{3}.

What are the eigenvalues and eigenspaces of \mathbf{P} ? (No computation required)

