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Projection matrices

Theorem. If {u;,...,u;} is an orthonormal basis for a subspace W, then
projyy v = (veup)uy + ... + (veug)uy.
If

U=| u | u ug |,

then projy,v = UUv.

The matrix UU7 is called the projection matriz for the subspace W. It does not depend on
the choice of orthonormal basis.
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Example. Let’s repeat the calculation I mentioned at the end of last class. Let

3 —4

v = -1 W, = -2 and Wy = 1
1 |’ -1 |’ 0

13 3

Using the Orthogonal Decomposition Theorem, we computed the projection of v onto W =
Span{wy, wa}. We got

—1
Projy v = 3wy + wy = :g
9
Let
_ 1 4 -
VIO V26
2 1
u_| VIO V%
b 0
V10
2 3
[ V10 V26 |
Then ) )
93 23 1 17
130 65 10 65
23 57 1 37
Gorp_ | B 105 10
1 1 1 1
10 5 0 5
17 37 1 97
L 65 130 5 130 J

Using the computer, we see that P? = P.
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The Gram-Schmidt Process

This procedure produces an orthogonal (or orthonormal) basis from a basis {xy,...,x,} of

a subspace W. It is an inductive procedure.

We work with the subspaces

S; = Span{x;, ...

JXl}‘

The orthogonal basis for W based on this procedure applied to this basis is denoted {vy, ..., v;}.

1. Let vi = x3.

2. Let Vo = X9 —

3. Let vy = x5 —

ete.

Xo*V1
1.
ViV,
X3°V1 X3°Vy
Vi —
Vi*Vy Vo Vy
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Example. Apply the Gram-Schmidt process to the basis

1 1 2
x;=1|1], Xo= 1|3 |, and X3 = | 2
0 1 3
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Example. Let’s compute the projection matrix P for orthogonal projection onto the plane
x1+x2—$3:OinR3.

What are the eigenvalues and eigenspaces of P? (No computation required)



