The vector space \mathbb{R}^n

Definition. The vector space \mathbb{R}^n is the set of all *n*-tuples of real numbers. That is, \mathbb{R}^n is the set of all possible $n \times 1$ "column vectors" of the form

$$\left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array}\right],$$

where x_k is a real number for k = 1, 2, ..., n.

Vector addition: Given two vectors

$$\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \quad \text{and} \quad \mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix},$$

the vector sum $\mathbf{v} + \mathbf{w}$ is the vector

$$\left[\begin{array}{c} v_1 + w_1 \\ \vdots \\ v_n + w_n \end{array}\right].$$

Vector addition can be visualized using the parallelogram rule.

Scalar multiplication: Given a vector

$$\mathbf{v} = \left[\begin{array}{c} v_1 \\ \vdots \\ v_n \end{array} \right]$$

and a real number (a "scalar") r, then

$$r\mathbf{v} = \left[\begin{array}{c} rv_1 \\ \vdots \\ rv_n \end{array} \right].$$

Algebraic Properties of \mathbb{R}^n

For all \mathbf{u} , \mathbf{v} , \mathbf{w} in \mathbb{R}^n and all scalars c and d:

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ commutative property
- $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ associative property
- $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ zero vector
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ distributive property
- $(c+d)\mathbf{u} + c\mathbf{u} + d\mathbf{u}$
- $c(d\mathbf{u}) = (cd)\mathbf{u}$
- $1\mathbf{u} = \mathbf{u}$

Example. The set of all points (x_1, x_2, x_3) in \mathbb{R}^3 that satisfy the equation

$$x_1 + x_2 + x_3 = 0$$

is a plane. How can we describe this plane using vector operations?

Definition. Given vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$ in \mathbb{R}^n and some choice of real numbers r_1, r_2, \ldots, r_p , then the vector

$$r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \ldots + r_p\mathbf{v}_p$$

is said to be a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$. The numbers r_1, r_2, \ldots, r_p are called the weights of the linear combination.

Examples.

Important question: Given vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$ as well as a vector \mathbf{b} , is \mathbf{b} a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$?

Example. Given

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\2\\0 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} -1\\-1\\2\\0 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} 2\\3\\3\\1 \end{bmatrix} \quad \mathbf{v}_4 = \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}$$

and

$$\mathbf{b}_1 = \begin{bmatrix} -3 \\ -2 \\ 3 \\ -1 \end{bmatrix} \qquad \mathbf{b}_2 = \begin{bmatrix} 5 \\ 6 \\ 1 \\ 1 \end{bmatrix}.$$

Is either \mathbf{b}_1 or \mathbf{b}_2 a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 ?

(Additional blank space on the top of the next page.)

Definition. Suppose that $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$ are vectors in \mathbb{R}^n . The set of all possible linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$ is called the

$$\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_p\}.$$

Note:

- 1. Every scalar multiple of each \mathbf{v}_k is in $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_p\}$.
- 2. The zero vector is always in the span of any set of vectors.
- 3. The Span $\{v_1\}$ is the set of all scalar multiples of v_1 .

Example. Let

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$.

What vectors are in $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2\}?$

Example. Consider the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} -5 \\ -8 \\ 2 \end{bmatrix}$.

For what values of x_3 is the vector

$$\mathbf{b} = \left[\begin{array}{c} 3 \\ -5 \\ x_3 \end{array} \right]$$

in $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2\}?$ What does this result mean geometrically?