The vector space \mathbb{R}^n **Definition.** The vector space \mathbb{R}^n is the set of all *n*-tuples of real numbers. That is, \mathbb{R}^n is the set of all possible $n \times 1$ "column vectors" of the form $$\left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array}\right],$$ where x_k is a real number for k = 1, 2, ..., n. Vector addition: Given two vectors $$\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \quad \text{and} \quad \mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix},$$ the vector sum $\mathbf{v} + \mathbf{w}$ is the vector $$\left[\begin{array}{c} v_1 + w_1 \\ \vdots \\ v_n + w_n \end{array}\right].$$ Vector addition can be visualized using the parallelogram rule. Scalar multiplication: Given a vector $$\mathbf{v} = \left[\begin{array}{c} v_1 \\ \vdots \\ v_n \end{array} \right]$$ and a real number (a "scalar") r, then $$r\mathbf{v} = \left[\begin{array}{c} rv_1 \\ \vdots \\ rv_n \end{array} \right].$$ Algebraic Properties of \mathbb{R}^n For all \mathbf{u} , \mathbf{v} , \mathbf{w} in \mathbb{R}^n and all scalars c and d: - $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ commutative property - $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ associative property - $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ zero vector - $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ distributive property - $(c+d)\mathbf{u} + c\mathbf{u} + d\mathbf{u}$ - $c(d\mathbf{u}) = (cd)\mathbf{u}$ - $1\mathbf{u} = \mathbf{u}$ **Example.** The set of all points (x_1, x_2, x_3) in \mathbb{R}^3 that satisfy the equation $$x_1 + x_2 + x_3 = 0$$ is a plane. How can we describe this plane using vector operations? **Definition.** Given vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$ in \mathbb{R}^n and some choice of real numbers r_1, r_2, \ldots, r_p , then the vector $$r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \ldots + r_p\mathbf{v}_p$$ is said to be a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$. The numbers r_1, r_2, \ldots, r_p are called the weights of the linear combination. ## Examples. Important question: Given vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$ as well as a vector \mathbf{b} , is \mathbf{b} a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$? Example. Given $$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\2\\0 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} -1\\-1\\2\\0 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} 2\\3\\3\\1 \end{bmatrix} \quad \mathbf{v}_4 = \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}$$ and $$\mathbf{b}_1 = \begin{bmatrix} -3 \\ -2 \\ 3 \\ -1 \end{bmatrix} \qquad \mathbf{b}_2 = \begin{bmatrix} 5 \\ 6 \\ 1 \\ 1 \end{bmatrix}.$$ Is either \mathbf{b}_1 or \mathbf{b}_2 a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 ? (Additional blank space on the top of the next page.) **Definition.** Suppose that $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$ are vectors in \mathbb{R}^n . The set of all possible linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$ is called the $$\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_p\}.$$ ## Note: - 1. Every scalar multiple of each \mathbf{v}_k is in $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_p\}$. - 2. The zero vector is always in the span of any set of vectors. - 3. The Span $\{v_1\}$ is the set of all scalar multiples of v_1 . ## Example. Let $$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$ and $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$. What vectors are in $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2\}?$ Example. Consider the vectors $$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$$ and $\mathbf{v}_2 = \begin{bmatrix} -5 \\ -8 \\ 2 \end{bmatrix}$. For what values of x_3 is the vector $$\mathbf{b} = \left[\begin{array}{c} 3 \\ -5 \\ x_3 \end{array} \right]$$ in $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2\}?$ What does this result mean geometrically?