The matrix-vector product $\mathbf{A x}$
Let \mathbf{A} be an $m \times n$ matrix and \mathbf{x} be a vector in \mathbb{R}^{n}. We can define the product $\mathbf{A x}$ as a linear combination of the vectors that come from the columns of \mathbf{A}.

Definition. Let A be an $m \times n$ matrix

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]=\left[\mathbf{A}_{1}\left|\mathbf{A}_{2}\right| \ldots \mid \mathbf{A}_{n}\right],
$$

where \mathbf{A}_{k} is the k th column of \mathbf{A}. Given

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

in \mathbb{R}^{n}, we define the matrix-vector product $\mathbf{A x}$ to be the linear combination

$$
x_{1} \mathbf{A}_{1}+x_{2} \mathbf{A}_{2}+\ldots+x_{n} \mathbf{A}_{n}
$$

Note that $\mathbf{A x}$ is a vector in \mathbb{R}^{m}.

Example.

$$
\begin{aligned}
{\left[\begin{array}{rr}
3 & -8 \\
-1 & 5 \\
2 & 3
\end{array}\right]\left[\begin{array}{r}
-4 \\
2
\end{array}\right] } & =-4\left[\begin{array}{r}
3 \\
-1 \\
2
\end{array}\right]+2\left[\begin{array}{r}
-8 \\
5 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
(-4)(3)+(2)(-8) \\
(-4)(-1)+(2)(5) \\
(-4)(2)+(2)(3)
\end{array}\right]=\left[\begin{array}{r}
-28 \\
14 \\
-2
\end{array}\right]
\end{aligned}
$$

Remark. Given an $m \times n$ matrix \mathbf{A} and $\mathbf{x} \in \mathbb{R}^{n}$, then the matrix equation

$$
\mathbf{A x}=\mathbf{b}
$$

has the same solution set as the system of linear equations whose augmented matrix is

$$
\left[\begin{array}{l|l|l|l|l}
& & & & \\
\mathbf{A}_{1} & \mathbf{A}_{2} & \ldots & \mathbf{A}_{n} & \mathbf{b} \\
& & & &
\end{array}\right] .
$$

Theorem. Let A be an $m \times n$ matrix. Then the following three statements are equivalent:

1. For each \mathbf{b} in \mathbb{R}^{m}, the equation $\mathbf{A x}=\mathbf{b}$ has at least one solution.
2. The columns of \mathbf{A} span \mathbb{R}^{m}.
3. The matrix \mathbf{A} has a pivot position in every row.

Warning: In this theorem, \mathbf{A} is a coefficient matrix. The three statements are not equivalent if \mathbf{A} is an augmented matrix.

Observation. Note that the k th entry in $\mathbf{A x}$ is

$$
a_{k 1} x_{1}+a_{k 2} x_{2}+\ldots+a_{k n} x_{n}
$$

For example,

$$
\left[\begin{array}{cc}
* & * \\
5 & 6 \\
* & *
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
* \\
5 x_{1}+6 x_{2} \\
*
\end{array}\right] .
$$

The expression

$$
a_{k 1} x_{1}+a_{k 2} x_{2}+\ldots+a_{k n} x_{n}
$$

is called the dot product of $\left[\begin{array}{llll}a_{k 1} & a_{k 2} & \ldots & a_{k n}\end{array}\right]$ and the vector \mathbf{x}.

Theorem. Let A be an $m \times n$ matrix. Then the matrix-vector product $\mathbf{A x}$ is "linear" in \mathbf{x}. That is,

1. $\mathbf{A}(\mathbf{u}+\mathbf{v})=\mathbf{A} \mathbf{u}+\mathbf{A} \mathbf{v}$ for all \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, and
2. $\mathbf{A}(c \mathbf{u})=c \mathbf{A} \mathbf{u}$ for all \mathbf{u} in \mathbb{R}^{n} and all c in \mathbb{R}.

Solution sets of systems of linear equations
Definition. Consider a linear system $\mathbf{A x}=\mathbf{b}$. We say that it is homogeneous if $\mathbf{b}=\mathbf{0}$ and nonhomogeneous otherwise.

The homogeneous case $\mathbf{A x}=\mathbf{0}$
Observation. Note that every homogeneous system is consistent. The solution $\mathbf{x}=\mathbf{0}$ is called the trivial solution. All other solutions are said to be nontrivial.

Theorem. If \mathbf{v}_{1} and \mathbf{v}_{2} are two solutions to the homogeneous system $\mathbf{A x}=\mathbf{0}$, then any linear combination of \mathbf{v}_{1} and \mathbf{v}_{2} is also a solution.

MA 242
September 13, 2012
Example. Let

$$
\mathbf{A}=\left[\begin{array}{rrrrr}
1 & 6 & 0 & -1 & -2 \\
0 & 0 & 1 & 4 & 6 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Express the solution set for $\mathbf{A x}=\mathbf{0}$ as a span. (Note that \mathbf{A} is a coefficient matrix, not an augmented matrix.)

