MA 242 September 20, 2012

More on linear independence

Last class we saw that a set of vectors {vy, vo, ..., vi} is linearly dependent if there is a
nontrivial dependence relation r; vy + rovy + ... 4+ vy = 0 among them. Otherwise the set
is linearly independent.

Linearly dependent, Linearly independent,
w in Span{u, v} w not in Span{u, v}

Example. We know that the set of vectors

Ol
c,o“»—\
m“oo
mup—n

is linearly dependent. What are all possible dependence relations among this set of vectors?
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Theorem. If {vy,..., v} is a linearly independent set of vectors in R”, then £ < n.

Theorem. A nonzero set {vy,..., vy} of vectors is linearly dependent if and only if, for
some index j, the vector v, is a linear combination of the vectors vy, ..., v;_i.

(The next page is blank.)



MA 242 September 20, 2012




MA 242 September 20, 2012

Linear transformations

In order to understand the definition of a linear transformation, let’s start with some exam-
ples of functions from R” to R™. (As we shall see, not all of these examples are linear
transformations.)

Examples: functions f : R - R

1. fi(z) = 2=
2. folz) =2z +1
3. f3(z) = 22

4. fi(z) = cosz

Examples: functions g : R? — R?
1. gl(.Tl,ﬂ?z) = (xl + To, 2$1 - 332)

2. go(w1,m2) = (cos(xy + To), Ty + 13)

Examples: functions  defined on R?

1. hl(l'l,fEQ,iEg,) = (.7)1 + T3, L1 — X9 + $3)

1 2 -1 1 T
2. h2($1,$2,$3) = g -1 2 1 T2
1 1 2 x3

Definition. Given a function (transformation) 7" : R* — R™, we say that 7T is linear if
1. T(vy +vy) =T (v1) + T(ve) for all v; and v, in R, and
2. T(rv) =rT(v) for all vin R" and all 7 in R.
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Terminology: Given a linear transformation 7" : R* — R™:

e R” is the domain of T.

e Our textbook says that R™ is the codomain of T.

e The image or range of T is the set of vectors

{w e R"|T(v) = w for some v € R"}.

Example. Consider the function T'(z1, Ts, 3) = (21,0). Its domain is R?, its codomain is
R?, and its image is the z;-axis in R2. Note that its image is not R!.
Basic facts about linear transformations 7’

1. T7(0)=0

2. T(rvi+ ...+ rpvg) =riT(vy) + ...+ 7T (vg)

Which of the functions given above are linear?
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One way to show that a transformation is linear is to verify the two conditions of linearity
directly, but there is an easier way to see that these transformations are linear.

Important class of examples: Given an m x n matrix A, then we can define a linear trans-
formation 7' : R* — R™ by the equation

T(x) = Ax.

We know that 7' is a linear transformation because the matrix-vector product satisfies the
necessary conditions.

Example. Let

1 0 1
H= 1 -1 1
Then
x1
H To =
T3



