Projection Matrices

We discussed projection matrices briefly when we discussed orthogonal projection. In particular, we discussed the following theorem.

Theorem. Let \{u_1, \ldots, u_k\} be an orthonormal basis for a subspace W of \(\mathbb{R}^n\). Form the \(n \times k\) matrix

\[
U = \begin{bmatrix} u_1 & u_2 & \ldots & u_k \end{bmatrix}.
\]

Then \(\text{proj}_W v = UU^T v\).

The matrix \(UU^T\) is called the projection matrix for the subspace W. It does not depend on the choice of orthonormal basis.

What if we do not start with an orthonormal basis of W?

Theorem. Let \{a_1, \ldots, a_k\} be any basis for a subspace W of \(\mathbb{R}^n\). Form the \(n \times k\) matrix

\[
A = \begin{bmatrix} a_1 & a_2 & \ldots & a_k \end{bmatrix}.
\]

Then the projection matrix for W is \(A(A^T A)^{-1}A^T\).

To see why this formula is true, we need a lemma.

Lemma. Suppose A is an \(n \times k\) matrix whose columns are linearly independent. Then \(A^T A\) is invertible.

To see why this lemma is true, consider the transformation \(A : \mathbb{R}^k \rightarrow \mathbb{R}^n\) determined by A. Since the columns of A are linearly independent, this transformation is one-to-one. Moreover, the null space of \(A^T\) is orthogonal to the column space of A. Consequently, \(A^T\) is one-to-one on the column space of A, and as a result, \(A^T A : \mathbb{R}^k \rightarrow \mathbb{R}^k\) is one-to-one. By the Invertible Matrix Theorem, \(A^T A\) is invertible.

Now we can compute the projection matrix for the column space of A. (Note that \(W = \text{Col} A\).) Any element of the column space of the matrix A is a linear combination of the columns of A, that is,

\[x_1a_1 + x_2a_2 + \ldots + x_ka_k.\]

If we let

\[x = \begin{bmatrix} x_1 \\ \vdots \\ x_k \end{bmatrix},\]

1
then
\[x_1a_1 + x_2a_2 + \ldots + x_ka_k = Ax. \]

Given \(v \) in \(\mathbb{R}^n \), we denote by \(x_p \) the \(x \) that corresponds to the projection of \(v \) onto \(W \). In other words, let
\[\text{proj}_W v = Ax_p. \]

We find the projection matrix by calculating \(x_p \).

The projection of \(v \) onto \(W \) is characterized by the fact that
\[v - \text{proj}_W v \]
is orthogonal to each vector \(w \) in \(W \), that is,
\[w \cdot (v - \text{proj}_W v) = 0 \]
for all \(w \) in \(W \). Since \(w = Ax \) for some \(x \), we have
\[Ax \cdot (v - Ax_p) = 0 \]
for all \(x \) in \(\mathbb{R}^k \). Writing this dot product in terms of matrices yields
\[(Ax)^T(v - Ax_p) = 0, \]
which is equivalent to
\[(x^TA^T)(v - Ax_p) = 0. \]
Converting back to dot products, we have
\[x \cdot A^T(v - Ax_p) = 0. \]
In other words, the vector \(A^T(v - Ax_p) \) is orthogonal to every vector \(x \) in \(\mathbb{R}^k \). The only vector in \(\mathbb{R}^k \) with this property is the zero vector, so we may conclude that
\[A^T(v - Ax_p) = 0. \]
We get
\[A^Tv = A^TAx_p. \]

From the lemma, we know that \(A^TA \) is invertible, and we have
\[(A^TA)^{-1}A^Tv = x_p. \]
Since \(Ax_p \) is the desired projection, we have
\[A(A^TA)^{-1}A^Tv = \text{proj}_W v. \]
We conclude that the projection matrix for \(W \) is
\[A(A^TA)^{-1}A^T. \]
Note that any projection matrix P satisfies the two properties

1. $P^2 = P$, and

2. P is symmetric.

It is also true that any matrix that satisfies these two properties is the projection matrix for some subspace of \mathbb{R}^n (see Exercise 36 in Section 7.1 of Lay).