The Casting-Out Procedure

Given a vector subspace S spanned by $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$, we can obtain a basis B for S by casting out the vectors that are linear combinations of the preceding vectors. More precisely, let

1. $B_{1}=\left\{\mathbf{v}_{1}\right\}$ as long as $\mathbf{v}_{1} \neq \mathbf{0}$, and
2. for $i \geq 2$,
(a) (cast out) $B_{i}=B_{i-1}$ if \mathbf{v}_{i} is in Span B_{i-1}, or
(b) (keep) $B_{i}=B_{i-1} \cup\left\{\mathbf{v}_{i}\right\}$ if \mathbf{v}_{i} is not in Span B_{i-1}.

Then the final result B_{k} is a basis for S.
To prove this theorem, we must show that the casting-out procedure produces a linearly independent set that still spans S.

Linear independence: Let B_{i} be the first step in the procedure for which B_{i} is linearly dependent. Then \mathbf{v}_{i} is an element of B_{i}, but it is also a linear combination of vectors in B_{i-1}. This situation contradicts part 2 of the procedure. Consequently, the sets B_{i} are linearly independent for $i=1, \ldots, k$.

Spanning: We must show that $\operatorname{Span} B_{k}=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$. To do so, we prove that

$$
\operatorname{Span} B_{i}=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{i}\right\}
$$

for $i=1, \ldots, k$ by induction on i.
Certainly $\operatorname{Span} B_{1}=\operatorname{Span}\left\{\mathbf{v}_{1}\right\}$, so we assume that $\operatorname{Span} B_{i-1}=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}\right\}$ and show that $\operatorname{Span} B_{i}=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{i}\right\}$. If $B_{i}=B_{i-1}$, then \mathbf{v}_{i} is a linear combination of the vectors in B_{i-1}, and therefore,

$$
\begin{aligned}
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{i}\right\} & =\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}\right\} \\
& =\operatorname{Span} B_{i-1} \\
& =\operatorname{Span} B_{i} .
\end{aligned}
$$

If $B_{i} \neq B_{i-1}$, then every vector \mathbf{v} in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{i}\right\}$ can be written as

$$
\mathbf{v}=\mathbf{w}+r_{i} \mathbf{v}_{i}
$$

where \mathbf{w} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}\right\}$. By the inductive hypothesis, \mathbf{w} is in $\operatorname{Span} B_{i-1}$, and therefore, \mathbf{v} is in $\operatorname{Span} B_{i}$.

