The Casting-Out Procedure

Given a vector subspace S spanned by $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$, we can obtain a basis B for S by casting out the vectors that are linear combinations of the preceding vectors. More precisely, let

- 1. $B_1 = {\mathbf{v}_1}$ as long as $\mathbf{v}_1 \neq \mathbf{0}$, and
- 2. for $i \geq 2$,
 - (a) (cast out) $B_i = B_{i-1}$ if \mathbf{v}_i is in Span B_{i-1} , or
 - (b) (keep) $B_i = B_{i-1} \cup \{\mathbf{v}_i\}$ if \mathbf{v}_i is not in Span B_{i-1} .

Then the final result B_k is a basis for S.

To prove this theorem, we must show that the casting-out procedure produces a linearly independent set that still spans S.

Linear independence: Let B_i be the first step in the procedure for which B_i is linearly dependent. Then \mathbf{v}_i is an element of B_i , but it is also a linear combination of vectors in B_{i-1} . This situation contradicts part 2 of the procedure. Consequently, the sets B_i are linearly independent for $i = 1, \ldots, k$.

Spanning: We must show that $\text{Span} B_k = \text{Span} \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$. To do so, we prove that

$$\operatorname{Span} B_i = \operatorname{Span} \{\mathbf{v}_1, \dots, \mathbf{v}_i\}$$

for $i = 1, \ldots, k$ by induction on i.

Certainly Span B_1 = Span{ \mathbf{v}_1 }, so we assume that Span B_{i-1} = Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_{i-1}$ } and show that Span B_i = Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_i$ }. If $B_i = B_{i-1}$, then \mathbf{v}_i is a linear combination of the vectors in B_{i-1} , and therefore,

$$Span\{\mathbf{v}_1, \dots, \mathbf{v}_i\} = Span\{\mathbf{v}_1, \dots, \mathbf{v}_{i-1}\}$$
$$= Span B_{i-1}$$
$$= Span B_i.$$

If $B_i \neq B_{i-1}$, then every vector **v** in Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_i$ } can be written as

$$\mathbf{v} = \mathbf{w} + r_i \mathbf{v}_i,$$

where **w** is in Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_{i-1}$ }. By the inductive hypothesis, **w** is in Span B_{i-1} , and therefore, **v** is in Span B_i .