NAME\_ Key

Justify all steps. Neatness definitely counts.

1. Compute

$$\int x \ln \left( \sqrt{1+x^2} \right) \, dx$$

$$\int \chi \ln(\sqrt{1+y^2}) dy = \frac{1}{2} \int \ln(\sqrt{1+u}) du$$

$$= \frac{1}{2} \int \frac{1}{2} \ln(1+u) du$$

$$= \frac{4[v \ln(v) - \int v \cdot v \, dv]}{4[v \ln(v) - \int 1 \, dv]}$$

$$= \frac{4[v \ln(v) - \int 1 \, dv]}{4[v \ln(v) - v + c]}$$

(check by diff eventiating!)

2. Compute

Let 
$$u = 8m(x)$$

$$du = cop(x)dx$$

$$du = \sqrt{1 - sin^2x} dx$$

$$= \int \sqrt{1 - u} du$$

$$du = \sqrt{1 - sin^2x} dx$$

$$= \int \sqrt{1 + u} du$$

$$- \int \sqrt{1 + u} du$$

$$= 2(1 + u)^{\frac{1}{2}} + 2$$

$$= 2(1 + sin(x)) + 2$$

3. Find the cubic Taylory polynomial centered at zero of the solutions of the differential equation

$$\frac{dy}{dx} = 2xy + e^{x}.$$

Grun  $y(x) = a_0 + a_1 x + a_2 x^2 + a_3 y^3 + \dots$ 

$$y'(x) = a_1 + 2a_2 x + 3a_3 x^2 + \dots$$

$$q_1 + 2a_2 x + 3a_3 x^2 + \dots = 2x \left(a_0 + a_1 x + a_2 x^2 + \dots\right)$$

$$+ \left(1 + x + \frac{y^2}{2} + \dots\right)$$

$$3a_1 = 1$$

$$2a_2 = 2a_0 + 1 \Rightarrow a_2 = a_0 + y_2$$

$$3a_3 = 2a_1 + \frac{1}{2} \Rightarrow a_3 = \frac{z}{3} a_1 + \frac{1}{6} = \frac{z}{3} \cdot 1 + \frac{1}{6} = \frac{5}{6}$$

$$So \quad y(x) = a_0 + x + (a_0 + \frac{1}{2}) x^2 + \frac{z}{6} x^3 + \dots$$

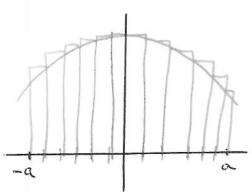
Find the solution of

This equation is separable

$$\frac{dy}{dx} = y(x+3), y(0) = 2.$$
This equation is separable

$$\frac{dy}{dx} = y(x+3), y(0) = 2.$$

$$\frac{dy}{dx} = x+3$$


$$\frac{d$$

y(0)=2>0 x/2+3x (no absolute values needed became the right hand side is +)

5. Suppose you are assigned to design a method to approximate value of  $\int_{-a}^{a} f(x) dx$  for functions f(x) that satisfy f'(x) > 0 for x < 0, f'(x) < 0 for x > 0 and f''(x) < 0 for all x values.

Your method must give an asnwer which is LARGER than the actual integral and the user will provide the "step size"  $\Delta x$ .

- (a) Sketch the graph of a "typical" function f(x) satisfying the conditions above.
- (b) Describe your method for approximating the integral on the figure from part (a) AND in one sentence.
- (c) Give a "worst case" bound on the error for your method.



Use the right hand rule on and the left hand rule on o=x=a

The wort case privi on -a < N < 0 is \$\frac{M}{2} \a. \DX

The " O < N < 9 is \$\frac{M}{2} \a. \DX

where M, = max 1f'(x) on -a = N = A

So the total worst care error 6 Mi-a DA

6. Given a curve in the xz-plane (y=0) given by  $z=f(x), a \le x \le b$  we make a solid from the curve out of boards of width  $\Delta x$  by placing one end of the board on the lines  $y=\pm 3, z=0$ and leaning the other end on the curve (see figure). (a) Give an expression for the volume of the object pictured (you will have to define a bit more notation to give your expression). Let X = a, X = a + DX. The volume between X and NiA is 1. (6) · f(x2) · AX So the to tal approximate value (b) What is the formula for the volume solid formed as  $\Delta x \to 0$ ? As AX->0 this tends to 5 3 Flxdy (c) The expression in part (a) is an approximation of the volume of the solid with a smooth surface that is formed when by taking the limit as the board width  $\Delta x$  tends to zero. Draw (as best you can) the region between one piece of "slice" of the smooth surface and the approximation with board width  $\Delta x$ . In order for your limit in part (b) to be correct, what must be true for this error region? Explain in a sentence why that condition holds here. Z he enor is the volue of Shoded region his error needs to be very small -- 50 of such errors is still small In this care the region is trapped in a prism shaped rigion of volume \$2. \$ MIDY. V32+ fixis The importent thing is that this is vivor is order

7. (a) Find the Taylor series for the solution of the differential equation

$$\frac{d^2y}{dx^2} = y \quad y(0) = a_0, y'(0) = a_1.$$

(Hint: Do enough terms of the Taylor polynomial so that you can see the pattern—you do not need to justify the pattern, just state it).

(b) What are the solutions with  $a_0 = 1$ ,  $a_1 = 1$  and  $a_0 = -1$ ,  $a_1 = 1$ ?