The following are problems similar to those that may appear on the first mid-term. So doing these problems is a good, but you should also review the homework problems, text, notes, etc.. JUSTIFY ALL ANSWERS. NEATNESS DEFINITELY COUNTS.

- 1. TRUE or FALSE and GIVE REASON: State if the following is true of fals and justify your answer in a sentence (or two at the most).
 - (a) Suppose you have a sequence a_1, a_2, \ldots that satisfies

$$\lim_{n \to \infty} a_n = 5$$

then

$$\lim_{n\to\infty}a_{2n}=10.$$

(b) Suppose you have a sequence a_1, a_2, \ldots that satisfies

$$\sum_{n=0}^{\infty} a_n$$

converges, then

$$\sum_{n=0}^{\infty} a_{2n}$$

also converges.

2. Compute

$$\lim_{n \to \infty} \frac{n^2 + 5n + 7}{3n^2 - 4n + \ln(n)}$$

3. Determine if the following converge or diverge. If it converges state the value if you can.

(a)

$$\sum_{n=0}^{\infty} \left(\frac{4}{5}\right)^n$$

(b)

$$\sum_{n=1}^{\infty} (0.3)^{2n}$$

(c)

$$\sum_{n=1}^{\infty} \left(\frac{n+3}{\sqrt{n^6+3n+2}} \right)$$

4. Use the idea behind the integral test to give an estimate on the size of

$$\sum_{n=1}^{100} \frac{n^2}{n^3 + 3}$$

(Be sure to include a figure which helps to explain what you are doing AND be neat!)

5. What is the radius of convergence of

(a)
$$\sum_{n=0}^{\infty} 3nx^n$$

$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{3n!}$$

- 6. (a) What it the 5th degree Taylor polynomial for sin(x) centered at 0?
 - (b) What is the maximum error between the 5th degree Taylor polynomial for $\sin(x)$ centered at 0 and $\sin(x)$ on the interval -2 < x < 2?
 - (c) What is the maximum error between the 5th degree Taylor polynomial for $\sin(x)$ centered at 0 and $\sin(x)$ on the interval -1 < x < 1?
- 7. What is the Taylor polynomial of 3rd degree of ln(x) centered at x=2.
- 8. The gravitational acceleration on a body near the earth is given by

$$A(x) = -\frac{GM}{x^2}$$

where G is the gravitational constant, M is the mass of the earth and x is the distance to the center of the earth. Let r_0 be the radius of the earth.

- (a) Give the Taylor series expansion of degree 3 for A(x) centered at $x = r_0$. (So your answer will have constants G, M and r_0).
- (b) How close is the 2nd degree Taylor polynomial for A(x) centered at r_0 to the value of A(x) on the interval $r_0 \le x \le 2r_0$?