*7. Potpourri. (No holds barred.) The following integrations involve all the methods of the previous problems

(i)
$$\int \frac{\arctan x}{1+x^2} dx.$$

(ii)
$$\int \frac{x \arctan x}{(1+x^2)^3} dx.$$

(iii)
$$\int \log \sqrt{1+x^2} \, dx.$$

(iv)
$$\int x \log \sqrt{1+x^2} \, dx.$$

(v)
$$\int \frac{x^2 - 1}{x^2 + 1} \cdot \frac{1}{\sqrt{1 + x^4}} dx$$
.

(vi)
$$\int \arcsin \sqrt{x} \, dx.$$

(vii)
$$\int \frac{x}{1+\sin x} \, dx.$$

(viii)
$$\int e^{\sin x} \cdot \frac{x \cos^3 x - \sin x}{\cos^2 x} \, dx.$$

(ix)
$$\int \sqrt{\tan x} \, dx.$$

(x)
$$\int \frac{dx}{x^6+1}$$
. (To factor x^6+1 , first factor y^3+1 , using Problem 1-1.)

The following two problems provide still more practice at integration, if you need it (and can bear it). Problem 8 involves algebraic and trigonometric manipulations and integration by parts, while Problem 9 involves substitutions. (Of course, in many cases the resulting integrals will require still further manipulations.)

8. Find the following integrals.

(i)
$$\int \log(a^2 + x^2) \, dx.$$

(ii)
$$\int \frac{1+\cos x}{\sin^2 x} \, dx.$$

(iii)
$$\int \frac{x+1}{\sqrt{4-x^2}} \, dx.$$

(iv)
$$\int x \arctan x \, dx$$
.

(v)
$$\int \sin^3 x \, dx.$$

(vi)
$$\int \frac{\sin^3 x}{\cos^2 x} \, dx.$$

(vii)
$$\int x^2 \arctan x \, dx.$$

(viii)
$$\int \frac{x \, dx}{\sqrt{x^2 - 2x + 2}}.$$

(ix)
$$\int \sec^3 x \tan x \, dx.$$

(x)
$$\int x \tan^2 x \, dx.$$

9. Find the following integrals.

(i)
$$\int \frac{dx}{(a^2 + x^2)^2}.$$

(ii)
$$\int \sqrt{1-\sin x} \ dx.$$

(iii)
$$\int \arctan \sqrt{x} \ dx.$$

(iv)
$$\int \sin \sqrt{x+1} \ dx.$$

$$\text{(v)} \quad \int \frac{\sqrt{x^3 - 2}}{x} \, dx.$$

(vi)
$$\int \log(x + \sqrt{x^2 - 1}) \, dx.$$

(vii)
$$\int \log(x + \sqrt{x}) \, dx.$$

(viii)
$$\int \frac{dx}{x - x^{3/5}}.$$

(ix)
$$\int (\arcsin x)^2 dx.$$

(x)
$$\int x^5 \arctan(x^2) dx$$
.

- 10. If you have done Problem 18-9, the integrals (ii) and (iii) in Problem 4 will lo very familiar. In general, the substitution $x = \cosh u$ often works for integral involving $\sqrt{x^2 1}$, while $x = \sinh u$ is the thing to try for integrals involvi $\sqrt{x^2 + 1}$. Try these substitutions on the other integrals in Problem 4. (T method is not really recommended; it is easier to stick with trigonomet substitutions.)
- *11. The world's sneakiest substitution is undoubtedly

$$t = \tan \frac{x}{2}$$
, $x = 2 \arctan t$,
 $dx = \frac{2}{1 + t^2} dt$.