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Almost Abelian Artin Representations of Q

David E. Rohrlich

Let Q denote the algebraic closure of Q in C. All number fields considered
here are understood to be subfields of Q. We write Qab for the maximal abelian
extension of Q and Qaa for the maximal almost abelian extension, the latter being
defined as the compositum of all finite Galois extensions K of Q such that the
commutator subgroup of Gal(K/Q) is central of exponent dividing 2. Note that
Qab ⊂ Qaa. Anderson [1] has proved the following beautiful complement to the
Kronecker–Weber theorem:

Qaa = Qab({ 4
√

� : � prime
} ∪ {√

tp,q : p,q prime,p < q
})

, (1)

where if p is odd then tp,q = sp,q/sq,p with

sp,q =
(p−1)/2∏

j=1

(
sin(πj/p)∏(q−1)/2

k=0 sin(π(j + pk)/(pq))

)
,

while if p = 2 then

t−1
p,q = 2q/2

((q−1)/2∏
k=0

sin

(
π

1 + 4k

4q

))

×
((q−1)/2∏

j=1

sin(πj/q) sin(π(2j − 1)/(2q))

sin(πj/(2q)) sin(π(2j − 1)/(4q))

)
.

Although we have departed from Anderson’s notation slightly, our tp,q nonethe-
less coincides with Anderson’s sin apq .

In this note, we use Anderson’s work to establish a connection between al-
most abelian Artin representations of Q—in other words, Artin representations
of Q that factor through Gal(Qaa/Q)—and Hecke–Shintani representations. The
latter term refers to two-dimensional irreducible monomial Artin representations
of Q that can be induced from more than one quadratic field. The intended al-
lusion is to Shintani’s work [12] on Stark’s conjecture, which rests on the fact
that certain irreducible two-dimensional Artin representations of Q induced from
real quadratic fields can also be induced from imaginary quadratic fields, making
it possible to deduce Stark’s conjecture in such cases from the Kronecker limit
formula. However, Shintani himself credits Hecke ([12], p. 158): “A coincidence
of an L-series of a real quadratic field with an L-series of an imaginary quadratic
field was first observed by Hecke.” In any case, we shall see that Hecke–Shintani
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representations are precisely the two-dimensional irreducible almost abelian Artin
representations of Q. The connection is in fact somewhat broader:

Theorem 1. Every irreducible almost abelian Artin representation of Q occurs
in a tensor product of Hecke–Shintani representations.

Here we regard an individual Hecke–Shintani representation as a tensor product
with one factor. Our main result is actually a bit more precise than Theorem 1
and includes a uniqueness statement (Theorem 2 in Section 5), but the more pre-
cise version depends on the notion of an AHS representation. Roughly speaking,
an AHS representation is a Hecke–Shintani representation directly tied to Ander-
son’s description (1) of Qaa. The definition will be given in Section 5, but the point
to emphasize here is that the class of AHS representations has been thoroughly
studied by Bae, Hu, and Yin [2], who not only construct such representations
explicitly but also compute their Artin conductors and characters in some cases.
(See also Yin and C. Zhang [13] and Yin and Q. Z. Zhang [14] for the algebraic
number theory underlying the constructions in [2].) In principle, the proof of the
key technical result of the present work (Proposition 12 in Section 4) could be
replaced by an appeal to [2], but for the reader’s convenience, we have included a
simple self-contained argument proving just what we need.

Returning to Theorem 1 itself, we would like to emphasize that even as it
stands, it is not a purely group-theoretic assertion: The analogous statement for
abstract groups is false. That said, much of the proof does amount to elementary
group theory of a sort that is well known in principle, at least in the context of
Heisenberg groups. This material occupies the first three sections of the paper.
Then in Sections 4 and 5, we deduce our main theorem from Anderson’s results.
We also give a criterion for a tensor product of Hecke–Shintani representations to
be irreducible.

Section 6 consists of two remarks. The first concerns Rankin–Selberg convo-
lutions: If ρ is a Hecke–Shintani representation and ρ∨ the dual representation,
then

L(s,ρ ⊗ ρ∨) = ζ(s)L(s,χ)L(s,χ ′)L(s,χ ′′), (2)

where χ , χ ′, and χ ′′ are certain primitive quadratic Dirichlet characters associ-
ated with ρ. Although (2) is just a simple group-theoretic observation, it has the
following amusing consequence: If f is the primitive cusp form of weight 1 at-
tached to a Hecke–Shintani representation of odd determinant, then the Petersson
norm of f can be calculated explicitly via the Dirichlet class number formula. We
shall see that (2) actually characterizes Hecke–Shintani representations among all
two-dimensional irreducible Artin representations of Q.

Our second remark is a footnote to Serre’s results on lacunarity [11]. Fix an
Artin representation ρ of Q such that 0 is a value of the character of ρ, and write
L(s,ρ) = ∑

n≥1 ann
−s . Let ϑ(x) be the number of n ≤ x such that an 
= 0. Serre

proves that

ϑ(x) ∼ cx/ logα x (3)
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with c,α > 0 ([11], p. 237, Théorème 3.4). In fact, he proves something much
stronger, namely that (3) can be replaced by an asymptotic expansion involving
arbitrarily high powers of 1/ logx. But we focus here on (3), and specifically on
the exponent α. Serre observes that if the image of ρ is the dihedral group of
order 8, then α = 3/4. (See [11], pp. 240–241, where the discussion involves the
modular form 	1/12(12z)—note that Serre refers to the same paper of Hecke [6]
cited by Shintani.) The footnote to be added here is that α = 3/4 for all Hecke–
Shintani representations and that they are again characterized by this property
among two-dimensional irreducible Artin representations of Q.

In the final section, we classify the finite groups G that can arise as Gal(L/Q),
where L is the fixed field of the kernel of a Hecke–Shintani representation. It
turns out that up to a cyclic direct factor of odd order, G is either the dihedral or
quaternion group of order 8 or else belongs to one of two infinite families, which
can be described explicitly. This classification could probably also be deduced
from [2], where generators and relations are given for some closely related Galois
groups.

It is a great pleasure to thank the referee for a careful reading of the paper, for
several thoughtful comments, and especially for drawing my attention to [2], of
which I had not been aware. I am also grateful to Henri Darmon for pointing out
to me that Hecke–Shintani representations appear (although not by that name)
in work of Darmon, Rotger, and Zhao (see [4], Prop. 3.2, part (4)). The term
Hecke–Shintani representation was introduced in [8], and the underlying group-
theoretic property figures prominently in a paper of Schmidt and Turki [9], who
refer to an abstract group representation of the relevant type as triply imprimitive.
This useful terminology is adopted here with a slight modification. Finally, it is
important to recognize the contributions of Das [5] and Seo [10], whose works
were fundamental to the development of Anderson’s theory.

1. Almost Abelian Groups

Throughout this note, G denotes a finite group, Z(G) its center, and [G,G] its
commutator subgroup. By the exponent of G we mean the minimal exponent,
that is, the smallest positive integer e such that ge = 1 for all g ∈ G. Following
Anderson [1], we say that G is almost abelian if [G,G] is contained in Z(G) and
of exponent 1 or 2. The case of exponent 1 ensures that abelian groups are almost
abelian groups. One readily verifies that subgroups, quotient groups, and finite
direct products of almost abelian groups are almost abelian.

Proposition 1. If G is an almost abelian group, then G ∼= P × A, where P is an
almost abelian 2-group and A is an abelian group of odd order.

Proof. Since [G,G] ⊂ Z(G), we see that G is nilpotent and hence isomorphic to
the product of its Sylow subgoups. Thus G ∼= P × A with P as before and A an
almost abelian group of odd order. As the exponent of [A,A] is odd and divides
2, it equals 1. (I am indebted to the referee for this simple argument.) �
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Proposition 2. If [G,G] has order ≤ 2, then G is an almost abelian group.
Conversely, if G is an almost abelian group with cyclic center, then [G,G] has
order ≤ 2.

Proof. The first assertion follows from the fact that normal subgroups of order
≤ 2 are central, and the second from the fact that cyclic groups have order equal
to their exponent. �
For any finite group G, we can consider the isoclinism pairing

〈∗,∗〉 : G/Z(G) × G/Z(G) −→ [G,G] (4)

given by 〈aZ(G), bZ(G)〉 = aba−1b−1 (cf. [3], p. xxiii). An easy calculation
shows that if [G,G] ⊂ Z(G)—in particular, if G is almost abelian —then (4) is
Z-bilinear, but even without this assumption, (4) is nondegenerate in the sense that
if, for some a ∈ G, we have 〈aZ(G), bZ(G)〉 = 1 for all b ∈ G, then a ∈ Z(G).
We are interested in the case where

G/Z(G) ∼= (Z/2Z)2m (5)

for some integer m ≥ 0. If G satisfies (5), then we put m(G) = m. The following
example (Heisenberg groups over F2) shows that, for each positive integer m,
there exists an almost abelian group G such that (5) holds with m(G) = m.

Example. Put n = m + 2 and let G ⊂ GLn(F2) be the subgroup 1 + W , where
1 is the n × n identity matrix, and W is the additive group of n × n matrices
(wij ) over F2 such that wij = 0 unless either i = 1 and 2 ≤ j ≤ n or j = n and
1 ≤ i ≤ n− 1. Let ω ∈ G be the element with 1’s on the diagonal and in the upper
right-hand corner and 0’s elsewhere. Then Z(G) = {1,ω}, (5) holds, and G is
almost abelian by the following proposition:

Proposition 3. If (5) holds, then G is almost abelian. Conversely, if G is almost
abelian with cyclic center, then (5) holds.

Proof. Suppose that (5) holds. Then G/Z(G) is abelian, so given a, b ∈ G, there
exists z ∈ Z(G) such that aba−1 = bz. Iterating, we find that a2ba−2 = bz2.
On the other hand, a2 ∈ Z(G), so a2ba−2 = b. Thus z2 = 1. In summary, for
all a, b ∈ G, we have aba−1b−1 ∈ Z(G) and (aba−1b−1)2 = 1, so G is almost
abelian.

Conversely, suppose that G is almost abelian with cyclic center. If G is abelian,
then (5) holds with m = 0. Otherwise, Proposition 2 gives [G,G] = {1,ω} with
ω ∈ Z(G). We claim that, for any a ∈ G, we have a2 ∈ Z(G), or in other
words a2ba−2 = b for all b ∈ G. This is obvious if aba−1 = b, so suppose that
aba−1b−1 = ω. Write this equation as a conjugation: aba−1 = ωb. Iterating the
conjugation, we obtain a2ba−2 = b, because ω2 = 1.

We have just seen that G/Z(G) has exponent 2. It follows that G/Z(G) is
abelian (which is obvious anyway, since [G,G] ⊂ Z(G)). Thus G/Z(G) is a
vector space over F2. Since [G,G] = F2 as an abelian group, (4) defines a nonde-
generate symplectic pairing on the F2-vector space G/Z(G), and (5) follows. �
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2. Almost Abelian Representations

Throughout, a representation of a finite group G is a finite-dimensional complex
representation of G. Similarly, a character of G is a complex character of G, de-
noted trρ if ρ is the underlying representation, and a one-dimensional character
is a homomorphism G → C×. When there is no risk of confusion, we often refer
to a one-dimensional character simply as a character. If ρ is an irreducible rep-
resentation of G, then we also speak of the central character of G, which is the
one-dimensional character of G giving the action of ρ | Z(G) by scalar multipli-
cation. If H is a subgroup of G and ξ is a one-dimensional character of H , then
indG

H ξ denotes the representation of G induced by ξ , and if H is normal in G and
g ∈ G, then ξg is the character of H given by ξg(h) = ξ(g−1hg) for h ∈ H .

Suppose that H is normal in G, and put ρ = indG
H ξ . Then

ρ | H =
⊕

g mod H

ξg, (6)

where g runs over a set of representatives for the distinct cosets of H in G, and ρ is
irreducible if and only if ξg 
= ξ for g ∈ G�H (Mackey’s criterion). In particular,
if ρ is irreducible, then H contains Z(G). Note also that if ρ is faithful, then H

is abelian, because (6) gives an embedding of H in the product of [G : H ] copies
of C×. These facts will be used frequently in what follows.

Proposition 4. Let G be almost abelian with cyclic center. If ρ is an irreducible
representation of G of dimension > 1, then there exists a one-dimensional char-
acter χ of G of odd order such that ρ ⊗ χ is faithful.

Proof. By Proposition 1 we may assume that G = P × C, where P is an almost
abelian 2-group, and C is cyclic of odd order as Z(G) = Z(P ) × C. Since the
restriction of ρ to Z(G) and in particular to C is scalar, we can choose a character
χ of C such that (ρ | C) ⊗ χ is a faithful representation of C. Viewing χ as a
character of G trivial on P , we claim that ρ ⊗ χ is faithful.

First, we show that ρ ⊗ χ is faithful on Z(G). Since |Z(P )| and |C| are rel-
atively prime and (ρ ⊗ χ) | C is faithful by construction, it suffices to see that
(ρ ⊗ χ) | Z(P ) is faithful. However, (ρ ⊗ χ) | Z(P ) = ρ | Z(P ), and as ρ is irre-
ducible of dimension > 1, it does not factor through G/[G,G]. Thus if we write
[G,G] = [P,P ] = {1,ω} (Proposition 2), then ρ(ω) 
= 1. As ω is the element of
order 2 in the cyclic 2-group Z(P ), it follows that ρ | Z(P ) is indeed faithful.

To complete the proof, take g ∈ G�Z(G); we must show that (ρ ⊗ χ)(g) 
=
1. Since (4) is nondegenerate, there exists h ∈ G such that ghg−1h−1 = ω. So
if (ρ ⊗ χ)(g) = 1, then (ρ ⊗ χ)(ω) = 1, a contradiction since χ | P = 1 and
ρ(ω) 
= 1. �

Proposition 5. Let G be an almost abelian group. Then Z(G) is cyclic if and
only if G has a faithful irreducible representation.
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Proof. We may assume that G is a nonabelian; otherwise, the proposition is im-
mediate. If Z(G) is cyclic, choose any irreducible representation ρ of G of di-
mension > 1; then ρ ⊗ χ is faithful for some character χ of G by Proposition 4.
Conversely, suppose that G has an irreducible representation ρ that is faithful.
Then ρ | Z(G) is faithful also, so by Schur’s lemma ρ provides an embedding of
Z(G) in C×; but a finite subgroup of C× is cyclic. �
If G is an almost abelian group and Z(G) is cyclic then (5) holds by Proposi-
tion 3. Recall that we then write m(G) for the integer m in (5). If, in addition,
G is nonabelian, then [G,G] ∼= F2 by Proposition 2, whence (4) makes G/Z(G)

into a symplectic vector space over F2. A subspace W of dimension m such that
〈w,w′〉 = 0 for all w,w′ ∈ W is a maximal isotropic subspace of G/Z(G).

Proposition 6. Let G be an almost abelian group with cyclic center, and let ρ

be an irreducible representation of G of dimension > 1. Then ρ is monomial of
dimension 2m, where m = m(G). In fact, given a subgroup H of G, there exists a
one-dimensional character ξ of H such that ρ = indG

H ξ if and only if H contains
Z(G) and H/Z(G) is a maximal isotropic subspace of G/Z(G).

Proof. Let H be the inverse image in G of a maximal isotropic subspace of
G/Z(G). Then H is an abelian normal subgroup of index 2m in G, and we claim
that ρ = indG

H ξ , where ξ is any one-dimensional character of H occurring in
ρ | H . To verify the claim, take g ∈ G � H ; it suffices to show that ξg 
= ξ . As
H is the inverse image of a maximal isotropic subspace of G/Z(G), there exists
h ∈ H such that ghg−1h−1 
= 1, and consequently ghg−1 = ωh, where ω is the
nonidentity element of [G,G]. However, ρ is irreducible of dimension > 1 and
thus does not factor through G/[G,G]. Furthermore, ρ | Z(G) is scalar. Thus
ρ(ω) = −1 and ξg(h) = −ξ(h). It follows that ξg 
= ξ , whence ρ = indG

H ξ .
Now let H be any subgroup of G such that ρ = indG

H ξ for some character ξ of
H . Then H contains Z(G), because ρ is irreducible. Thus H is the inverse image
of a subgroup W of G/Z(G); in particular, H is normal in G, and therefore (6)
holds. If ρ is faithful, then it follows that H is an abelian group, whence W is
isotropic and in fact maximal isotropic since the index of W in G/Z(G) is 2m. If
ρ is not faithful, then by Proposition 4 there exists a character χ of G such that
ρ ⊗ χ is faithful. Since ρ ⊗ χ ∼= indG

H (ξ · χ | H), we see that (6) holds with ρ

replaced by ρ ⊗ χ and ξ by ξ · χ | H . As before, we conclude that H is abelian
and W is maximal isotropic. �

Remark. It follows that if m(G) > 1, then there are no irreducible two-
dimensional representations of G at all. It is in this sense that Theorem 1 is not a
purely group-theoretic statement.

Proposition 7. Let G be an almost abelian group, and let ρ be a faithful irre-
ducible representation of G. Then trρ(g) = 0 if and only if g ∈ G�Z(G).

Proof. It suffices to prove that if g /∈ Z(G) then trρ(g) = 0, since the converse is
obvious. In particular, the theorem is vacuous for G abelian, so we may assume
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that dim(ρ) > 1. Note also that Z(G) is cyclic by Proposition 5. So suppose that
g /∈ Z(G). Then gZ(G) 
= 0 in G/Z(G), so there exists a maximal isotropic sub-
space W ⊂ G/Z(G) such that gZ(G) /∈ W . By Proposition 6 the inverse image H

of W in G is a subgroup such that ρ = indG
H ξ for some one-dimensional character

ξ of H . Since H is normal in G and g /∈ H , we conclude that trρ(g) = 0. �

Finally, we come to an elementary analogue of the theorem of Stone and von
Neumann. The version below differs from statements in the literature in at most a
few details. It is the key group-theoretic input to the proof of Theorem 1:

Proposition 8. Suppose that J is an almost abelian group, and let ρ and ρ′ be
irreducible representations of J with respective central characters ϕ and ϕ′. If

ϕ | [J,J ] = ϕ′ | [J,J ],
then ρ′ ∼= ρ ⊗ χ for some one-dimensional character χ of J .

Proof. First, let χ be any one-dimensional character of J , and consider the sum

s(χ) = 1

|J |
∑
j∈J

χ(j) trρ(j)trρ′(j). (7)

As ρ ⊗ χ and ρ′ are irreducible, the right-hand side of (7) is 1 if ρ ⊗ χ ∼= ρ′ and
0 otherwise. Thus it will suffice to show that, for some χ , we have s(χ) 
= 0.

Put G = J/kerρ and G′ = J/kerρ′, and let π : J → G and π ′ : J → G′ be
the quotient maps. Then we can write ρ = 
 ◦ π and ρ′ = 
′ ◦ π ′ with faithful
irreducible representations 
 and 
′ of G and G′, respectively. Applying Propo-
sition 7 to 
 and 
′, we see that trρ(j) trρ′(j) = 0 unless π(j) ∈ Z(G) and
π ′(j) ∈ Z(G′). Hence (7) becomes

s(χ) = 1

|J |
∑
h∈H

χ(h) trρ(h)trρ′(h) (8)

with H = π−1(Z(G)) ∩ (π ′)−1(Z(G′)).
Since π and π ′ are surjective, Z(J ) ⊂ H . We claim that ϕ and ϕ′ can be

extended to characters of H . Indeed, let φ and φ′ be the central characters of 


and 
′. Then ϕ = φ ◦ π and ϕ′ = φ′ ◦ π ′ on Z(J ), and we can take these same
equations as defining extensions of ϕ and ϕ′ to H . Equation (8) is now

s(χ) = (dimρ)(dimρ′)
|J |

∑
h∈H

χ(h)ϕ(h)ϕ′(h), (9)

because ρ | H and ρ′ | H are scalar multiplication by ϕ and ϕ′, respectively.
We now choose χ . Since [J,J ] is a subgroup of Z(J ) and a fortiori of H , we

can view ϕϕ′ as a one-dimensional character of H/[J,J ]. However, H/[J,J ] is
a subgroup of the abelian group J/[J,J ], so we can extend ϕϕ′ to a character
χ of J/[J,J ]. Viewing χ as a character of J trivial on [J,J ], we see that the
summand on the right-hand side of (9) is identically 1, whence s(χ) > 0 and in
particular s(χ) 
= 0. �
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3. Triply Monomial Representations

We now specialize to the case m = 1. We say that an irreducible two-dimensional
representation of a finite group G is triply monomial if it can be induced from
exactly three subgroups of index 2 in G. As mentioned in the Introduction, this is
a slight modification of the terminology in [9].

Although triply monomial representations are not required to be faithful, we
can always reduce to the faithful case, for if ρ is a triply monomial representation
of G with kernel K , then the representation ρ of G/K afforded by ρ is also triply
monomial. Indeed, if H and H ′ are distinct index-two subgroups of G from which
ρ can be induced, then H and H ′ contain K , and H/K and H ′/K are distinct
index-two subgroups of G/K from which ρ can be induced, and conversely.

Proposition 9. Let ρ be a faithful irreducible two-dimensional representation of
a finite group G. The following are equivalent:

(i) G is almost abelian.
(ii) ρ is triply monomial.

(iii) ρ can be induced from more than one subgroup of index 2 in G.

If these equivalent conditions hold and if H and H ′ are distinct subgroups of
index 2 in G from which ρ can be induced, then the third such subgroup is the
subgroup containing H ∩ H ′, which is of index 2 in G and not equal to H or H ′;
furthermore, Z(G) = H ∩ H ′.

Proof. The implication (i) ⇒ (ii) follows from Propositions 5 and 6, given that
in a two-dimensional symplectic vector space, every one-dimensional subspace
is maximal isotropic. The implication (ii) ⇒ (iii) is trivial. To prove that (iii)
implies (i), we merely rework the proof of Proposition 5 of [8], which asserts that
(iii) implies (ii). Let H and H ′ be distinct subgroups of index 2 in G from which
ρ can be induced, and write

G/(H ∩ H ′) ∼= G/H × G/H ′ ∼= (Z/2Z)2. (10)

Let h and h′ be representatives for the nontrivial coset of H ∩ H ′ in H and H ′,
respectively. Then h, h′, and hh′ represent the nontrivial cosets of H ∩ H ′ in
G, and consequently G is generated by h, h′, and H ∩ H ′. Since h and h′ both
centralize H ∩ H ′—for as ρ is faithful both H and H ′ are abelian—we see that
H ∩ H ′ ⊂ Z(G), whence H ∩ H ′ = Z(G) (else Z(G) has index two in G, and G

is abelian). Thus (10) gives (5), and (i) follows from Proposition 3. At the same
time, we have proved the final assertion of the proposition. �

The following proposition provides an alternative characterization.

Proposition 10. Let G be a finite group, H a subgroup of index 2, and ξ a one-
dimensional character of H , and suppose that the representation ρ = indG

H ξ is
faithful and irreducible. Then ρ is triply monomial if and only if ξ2 extends to a
character of G.
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Proof. Suppose that ρ is triply monomial, so that G is almost abelian by
Proposition 9. Then (aba−1b−1)2 = 1 for any a, b ∈ G, and consequently
ξ2(aba−1b−1) = 1 (note that [G,G] ⊂ H since G/H is abelian). So ξ2 factors
through the subgroup H/[G,G] of the abelian group G/[G,G] and therefore ex-
tends to a character of G.

Conversely, suppose that χ is an extension of ξ2 to G. Then χ(a−1ba) = χ(b)

for a, b ∈ G. Taking b = h ∈ H , we see that ξ(a−1h2a) = ξ(h2). Replacing a first
by ag and then by g, where g ∈ G�H , we also find that ξg(a−1h2a) = ξg(h2).
Since ρ is faithful and ρ | H = ξ ⊕ ξg , we deduce that a−1h2a = h2. In other
words, if h ∈ H , then h2 ∈ Z(G). So H/Z(G) is an abelian subgroup of G/Z(G)

of exponent 2 and index 2.
To complete the argument, view ρ as an irreducible representation G →

GL2(C). Then we may identify G/Z(G) with a finite subgroup of PGL2(C) and
hence with the dihedral group D2n of order 2n (n ≥ 2) or with A4, S4, or A5.
However, the last three groups have no abelian subgroups of index 2, and D2n has
an abelian subgroup of index 2 and exponent 2 only if n is 2 or 4. If n = 2, then
(5) holds with m = 1, G is an almost abelian group by Proposition 3, and hence
ρ is triply monomial by Proposition 9. Thus we may assume that G/Z(G) ∼= D8.

If H/Z(G) is cyclic, then it is of order 2, for its exponent is 2. Since [G : H ] =
2, it follows that |G/Z(G)| = 4, a contradiction. Therefore H/Z(H) is not cyclic.
However, D8 has a cyclic subgroup of index 2, and hence so does G/Z(G). Thus
there is a subgroup H ′ of G containing Z(G) with H ′/Z(G) cyclic of index 2
in G/Z(G). The cyclicity of H ′/Z(G) ensures that H ′ is an abelian subgroup
of index 2, and since ρ | H ′ is nonscalar (for ρ is faithful and Z(G) is a proper
subgroup of H ′), ρ is induced from H ′. By assumption, ρ is also induced from
H , but H 
= H ′ because H/Z(G) is not cyclic. Thus ρ is triply monomial by
Proposition 9. �

Finally, we note that the class of triply monomial representations is closed under
dualization and one-dimensional twists:

Proposition 11. If ρ is a triply monomial representation of a finite group G

and χ is a one-dimensional character of G, then both ρ∨ and ρ ⊗ χ are triply
monomial.

Proof. For each subgroup H of index 2 in G such that ρ = indG
H ξ with character

ξ of H , we have ρ∨ = indG
H ξ−1 and ρ ⊗ χ = indG

H ξ ′ with ξ ′ = ξ · χ | H . �

4. Hecke–Shintani Representations

Given a profinite group �, we write Z(�) for its center, [�,�] for its commu-
tator subgroup, and [�,�]cl for the closure of [�,�]. A representation of � is
a continuous homomorphism � → GL(V ), where V is a finite-dimensional vec-
tor space over C. Such a homomorphism is trivial on an open subgroup of �

and so can be viewed as a representation of a finite group G. In particular, if
K ⊂ Q is a number field, then an Artin representation of K can be viewed either
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as a continuous homomorphism ρ : Gal(Q/K) → GL(V ) or as a representation
ρ : Gal(L/K) → GL(V ) for some finite Galois extension L of K . Via the lat-
ter alternative, terms pertaining to representations of finite groups carry over to
Artin representations. We say that ρ is almost abelian if its image is an almost
abelian group and triply monomial if it is two-dimensional and irreducible and
can be induced from exactly three quadratic extensions of K . A Hecke–Shintani
representation is a triply monomial Artin representation of Q.

A word of caution is in order. Let � be a profinite group, and let G be the quo-
tient of � by an open subgroup. Although the quotient map � → G is surjective,
its restriction Z(�) → Z(G) may not be, so if ρ is an irreducible representation
of � which factors through G then the domain of the central character of ρ is open
to interpretation. We intend the more restrictive interpretation, that is, Z(�) or its
image in Z(G). However, starting in the next paragraph, we specialize to a setting
where [�,�]cl ⊂ Z(�), and from that point on the central character of ρ will ap-
pear primarily via its restriction to [�,�]cl. The surjectivity of [�,�]cl → [G,G]
then eliminates any possibility of confusion.

Indeed, from now on we take � = Gal(Qaa/Q) and put

� = Gal(Qaa/Qab) = [�,�]cl.

To verify that � ⊂ Z(�), let G be a quotient of � by an open subgroup, and
let λ : � → G be the quotient map. Then λ(�) ⊂ [G,G], and since G is almost
abelian, it follows that λ(�) ⊂ Z(G). Since G is arbitrary, we obtain � ⊂ Z(�).

It follows from (1) that � is an abelian group of exponent 2, and even though
it is written multiplicatively, we shall view it as a vector space over F2. The same
goes for �̂, where the hat denotes Pontryagin dual. In fact, the proof of our main
result depends on the choice of an explicit basis for �̂ over F2. Let U be the
subset of Qab consisting of the numbers

√
� for each prime number � and the

numbers tp,q for each ordered pair of prime numbers (p, q) with p < q . An-
derson’s theory gives not only (1) but also the linear independence over F2 of
the cosets in Qab×/(Qab×)2 represented by the elements u ∈ U . Thus putting
�u = Gal(Qab(

√
u)/Qab), we have

� ∼=
∏
u∈U

�u (11)

by Kummer theory, whence

�̂ ∼=
⊕
u∈U

�̂u (12)

on passing to Pontryagin duals. We use identifications (11) and (12) as follows:
For each u0 ∈ U , we define σu0 ∈ � by demanding that σu0 map to the nontrivial
element of �u for u = u0 and the trivial element otherwise. We also define ψu0 ∈
�̂ by the condition that ψu0(σu) = −1 if u = u0 and ψu0(σu) = 1 otherwise. The
set {ψu0 : u0 ∈ U} is the desired basis for �̂. The key step in the proof of our main
theorem is now the following:
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Proposition 12. Given u ∈ U , there exists a Hecke–Shintani representation ρ

such that the associated central character ϕ satisfies ϕ | � = ψu.

Proof. There are two cases to consider: either u = √
� for some prime �, or u =

tp,q with primes p < q .
Suppose first that u = √

�, and put L = Q(
4
√

�, i), so that the group G =
Gal(L/Q) is dihedral of order 8. Thus G satisfies (5) with m = 1, and hence the
irreducible two-dimensional representation ρ of G (unique up to isomorphism) is
a Hecke–Shintani representation. Furthermore, L = K(

√
u), where K = L ∩Qab

(=Q(
√

�, i)). It follows that when ρ is viewed as a representation of �, its central
character coincides with ψu on �.

Next, suppose that u = tp,q with p < q . Let K = Q(e2πi/(4pq)), so that

Gal(K/Q) ∼= (Z/4Z)× × (Z/pZ)× × (Z/qZ)× (13)

if p is odd, and
Gal(K/Q) ∼= (Z/8Z)× × (Z/qZ)× (14)

if p = 2. Let t ∈ Qab× be the number denoted sin a on p. 467 of [1]. Then t

represents the same coset as tp,q modulo (Qab×)2 but has the additional virtue
that the field L = K(

√
t) is Galois over Q. In fact, if p is odd, then we can dis-

pense with t , because Das has shown that K(
√

tp,q) is itself Galois over Q ([5],
p. 3576, Thm. 11), but I do not know whether the same is true for p = 2. In
any case, QabL = Qab(

√
u) and L ∩ Qab = K , whence J = Gal(L/Q) is non-

abelian and thus has an irreducible representation ρ of dimension > 1. How-
ever, ρ | Gal(L/K) is nontrivial; otherwise, ρ factors through the abelian group
Gal(K/Q). Thus it is again the case that when ρ is viewed as a representation
of �, its central character coincides with ψu on �. It remains only to see that
dim(ρ) = 2. Let M be the fixed field of the kernel of ρ, and put G = Gal(M/Q).
Then G is a quotient of J , so G/[G,G] is a quotient of J/[J,J ] or, in other
words, of Gal(K/Q). As [G,G] ⊂ Z(G), it follows that G/Z(G) is a quotient
of Gal(K/Q). Inspecting both (13) and (14), we see that Gal(K/Q) can be gen-
erated by three elements. Hence so can G/Z(G). Referring to (5), we see that
m(G) = 1, so dim(ρ) = 2 by Proposition 6. �

5. Proof of the Main Theorem

We call a Hecke–Shintani representation ρ an AHS representation if the restric-
tion to � of the central character of ρ coincides with one of the characters ψu

for u ∈ U . Furthermore, we say that a list of AHS representations ρ1, ρ2, . . . , ρn

is independent if the corresponding characters ψu1,ψu2, . . . ,ψun are linearly in-
dependent as elements of the vector space �̂. Equivalently, ρ1, ρ2, . . . , ρn are
independent if u1, u2, . . . , un are distinct elements of U .

Theorem 2. Let ρ be an irreducible almost abelian Artin representation of Q
of dimension greater than one. Then there exist independent AHS representa-
tions ρ1, ρ2, . . . , ρn such that ρ occurs in ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn. Furthermore, if
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ρ′
1, ρ

′
2, . . . , ρ

′
n′ are also independent AHS representations such that ρ occurs in

ρ′
1 ⊗ ρ′

2 ⊗ · · · ⊗ ρ′
n′ , then n′ = n, and there is a permutation β of {1,2, . . . , n}

such that ρ′
β(j)

∼= ρj ⊗ χj with one-dimensional characters χj of � satisfying
χ1χ2 · · ·χn = 1 on Z(�).

Proof. Let ϕ be the central character of ρ. By Proposition 12 there exist inde-
pendent AHS representations ρ1, ρ2, . . . , ρn with respective central characters
ϕ1, ϕ2, . . . , ϕn such that

ϕ1ϕ2 · · ·ϕn | � = ϕ | �. (15)

The restriction of ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn to Z(�) is scalar, given by ϕ1ϕ2 · · ·ϕn,
and thus if π is an irreducible constituent of ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn, then the central
character of π is ϕ1ϕ2 · · ·ϕn. Let M ⊂ Qaa be a finite Galois extension of Q such
that π and ρ both factor through Gal(M/Q). Taking account of (15) and applying
Proposition 8 with J = Gal(M/Q), we deduce that ρ ∼= π ⊗ χ for some one-
dimensional character of �. Thus ρ occurs in ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn ⊗ χ . However,
ρn ⊗ χ is itself a Hecke–Shintani representation by Proposition 11. Furthermore,
when restricted to �, the central characters of ρn and ρn ⊗ χ are equal, because
χ is trivial on �. So after replacing ρn by ρn ⊗ χ , we obtain independent AHS
representations such that ρ occurs in their tensor product.

Next, we prove the uniqueness statement. Let ϕj and ϕ′
i be the central charac-

ters of ρj and ρ′
i , respectively, and write ϕj | � = ψuj

, ϕ′
i | � = ψu′

i
. Then

n′∏
i=1

ψu′
i
=

n∏
j=1

ψuj
, (16)

because both sides coincide with the restriction to � of the central character of ρ.
In view of the distinctness of u1, . . . , un, the distinctness of u′

1, . . . , u
′
n′ , and the

linear independence of the ψu for u ∈ U , we deduce from (16) that n = n′ and
that u′

β(j)
= uj for some permutation β of {1,2, . . . , n}. Applying Proposition 8

again, we conclude that ρ′
β(j)

∼= ρj ⊗ χj for some one-dimensional characters
χj of �. Finally, since ϕ1ϕ2 · · ·ϕn and ϕ′

1ϕ
′
2 · · ·ϕ′

n both coincide with the central
character of ρ, they coincide with each other. However,

ϕ′
β(j) = (χj | Z(�))ϕj ,

so χ1χ2 · · ·χn | Z(�) = 1. �

Remark. It is not hard to see that Z(�) = Gal(Qaa/Qqu), where Qqu is the com-
positum of all quadratic extensions of Q in Q.

Theorem 1 follows from Theorem 2 and a silly remark:

Proposition 13. Every one-dimensional character of � occurs in a tensor prod-
uct of two Hecke–Shintani representations.
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Proof. Let ρ be any Hecke–Shintani representation. Since ρ is irreducible, the
trivial character occurs in ρ ⊗ ρ∨, so χ occurs in (ρ ⊗ χ) ⊗ ρ∨. Now use Propo-
sition 11. �

Next, we prove two results complementary to Theorems 1 and 2. The first is im-
plicit already in the proof of Theorem 2.

Proposition 14. If ρ1, ρ2, . . . , ρn are Hecke–Shintani representations and ρ and
ρ′ are irreducible representations occurring in ρ1 ⊗ρ2 ⊗· · ·⊗ρn, then ρ′ ∼= ρ⊗χ

for some one-dimensional character χ of �.

Proof. If ϕ1, ϕ2, . . . , ϕn are the central characters of ρ1, ρ2, . . . , ρn and ϕ and ϕ′
are those of ρ and ρ′, then ϕ and ϕ′ both coincide with ϕ1ϕ2 · · ·ϕn and hence with
each other. In particular, ϕ | � = ϕ′ | �, and an appeal to Proposition 8 completes
the proof. �

The second complement is a criterion for a tensor product of Hecke–Shintani
representations to be irreducible. First we prove a lemma.

Lemma. Let G be a finite group, and let H be a subgroup such that the quotient
map H → G/Z(G) is surjective. Then the irreducible representations of H are
precisely the restrictions to H of the irreducible representations of G.

Proof. The hypothesis means that G = H · Z(G). If ρ is an irreducible represen-
tation of G, then Z(G) acts by scalars, so an H -stable subspace of the space of
ρ is also G-stable. Hence the irreducibility of ρ gives that of ρ | H . Conversely,
if ρ is an irreducible representation of H , then the restriction of ρ to H ∩ Z(G)

is scalar, given by a character ϕ of H ∩ Z(G). After extending ϕ to a charac-
ter of Z(G), we extend ρ to G by setting ρ(zh) = ϕ(z)ρ(h) for z ∈ Z(G) and
h ∈ H . �

To state our criterion for irreducibility, we make two definitions, the first of which
is standard for n = 2 but perhaps less so for n > 2: We say that finite Galois
extensions K1,K2, . . . ,Kn of Q are linearly disjoint over Q if

[K :Q] =
n∏

j=1

[Kj : Q], (17)

where K = K1K2 · · ·Kn. For the second definition, let ρ be a Hecke–Shintani
representation, viewed as a faithful representation of G = Gal(L/Q) for some
finite Galois extension L of Q. From (5) it follows that the fixed field K of Z(G)

is a biquadratic field, and we call K the biquadratic field associated to ρ.

Proposition 15. A tensor product of Hecke–Shintani representations is irre-
ducible if and only if the associated biquadratic fields are linearly disjoint over Q.

Proof. Let ρ1, ρ2, . . . , ρn be Hecke–Shintani representations, let K1,K2, . . . ,Kn

be the associated biquadratic fields, and let L1,L2, . . . ,Ln be the fixed fields of
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the respective kernels. We put ρ = ρ1 ⊗ρ2 ⊗· · ·⊗ρn and write K = K1K2 · · ·Kn

and L = L1L2 · · ·Ln.
Suppose first that K1,K2, . . . ,Kn are linearly disjoint over Q. Put

G =
n∏

j=1

Gal(Lj/Q)

and let H be the image in G of the product of the restriction maps

Gal(L/Q) →
n∏

j=1

Gal(Lj /Q). (18)

We claim that the hypothesis of the lemma is satisfied. Indeed, the center of a
product is the product of the centers, and Z(Gal(Lj/Q)) = Gal(Lj/Kj ), so

G/Z(G) =
n∏

j=1

Gal(Kj/Qj ).

Thus to check the hypothesis of the lemma, we must verify that the composition
of (18) with

n∏
j=1

Gal(Lj/Q) →
n∏

j=1

Gal(Kj/Q)

is surjective. However, this composition factors through Gal(K/Q) to give

Gal(K/Q) →
n∏

j=1

Gal(Kj/Q),

which is clearly injective and hence surjective by (17). Thus the lemma implies
that the irreducible representations of Gal(L/Q) are precisely the pullbacks of
those of G. Because G is a product, its irreducible representations are the external
tensor products of irreducible representations of the factors; consequently, ρ is an
irreducible representation of Gal(L/Q).

Conversely, suppose that ρ is irreducible. We observe that for g ∈ Gal(L/Q),
trρ(g) = 0 if and only if trρj (g) = 0 for some j and hence if and only if
g /∈ Gal(L/Kj ) for some j (Proposition 7). Hence trρ(g) = 0 if and only if
g /∈ Gal(L/K). Let M be the fixed field of the kernel of ρ. Then K ⊂ M , for
if g ∈ Gal(L/Q) and g | K is nontrivial, then trρ(g) = 0, whence ρ(g) 
= 1.
Putting G = Gal(M/Q) and viewing ρ as a faithful irreducible representation
of G, we see in fact (appealing to Proposition 7 again) that K is the fixed field
of Z(G). Therefore [K : Q] = [G : Z(G)]. Now Propositions 5 and 3 imply that
[G : Z(G)] = 22m for some m, and then dim(ρ) = 2m by Proposition 6. However,
dim(ρ) = 2n, because ρ is the tensor product of n two-dimensional representa-
tions. Thus m = n and, consequently,

[K : Q] = [G : Z(G)] = 22m = 22n.

Formula (17) follows. �
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6. Two Characterizations of Hecke–Shintani Representations

We come now to the characterizations mentioned in the Introduction. The first one
pertains to Rankin–Selberg convolutions and depends on the following proposi-
tion. For a finite group G, let regG denote the regular representation of G. We say
that a representation of G is abelian if its image is abelian, or equivalently, if it is
a direct sum of one-dimensional characters.

Proposition 16. Let ρ be a faithful two-dimensional irreducible representation
of a finite group G, and let ρ∨ be the dual representation. The tensor product ρ ⊗
ρ∨ is abelian if and only if ρ is triply monomial. Furthermore, if these equivalent
conditions hold, then ρ ⊗ ρ∨ ∼= regA, where A = G/Z(G) and regA is viewed as
a representation of G.

Proof. If ρ ⊗ ρ∨ is abelian, then it is trivial on [G,G], whence ρ | [G,G] is
reducible—otherwise the multiplicity of the trivial representation in (ρ ⊗ ρ∨) |
[G,G] would be 1, not 4. So ρ | [G,G] = ψ ⊕ ψ ′ with two one-dimensional
characters ψ and ψ ′ of [G,G]. If ψ 
= ψ ′, then ψ−1ψ ′ is a nontrivial character
occurring in ρ ⊗ ρ∨, a contradiction. So ψ = ψ ′, and ρ | [G,G] is scalar. Since
ρ is faithful, it follows that [G,G] ⊂ Z(G) and hence that G/Z(G) is abelian
(but not cyclic, else G is abelian). If we view ρ as giving an embedding of G

in GL2(C) and hence of G/Z(G) in PGL2(C), then the classification of finite
subgroups of PGL2(C) shows that G/Z(G) ∼= (Z/2Z)2. Therefore G is almost
abelian by Proposition 3, and then Proposition 9 shows that ρ is triply monomial.

Conversely, suppose that ρ is triply monomial, and write ρ = indG
H ξ with a

subgroup H of index two in G and a one-dimensional character ξ of H . Then
ρ | H ∼= ξ ⊕ ξg for any g ∈ G�H , and therefore ρ∨ | H = ξ−1 + (ξg)−1. Con-
sequently,

ρ ⊗ ρ∨ ∼= indG
H (ξ ⊗ (ξ−1 ⊕ (ξg)−1)).

The right-hand side is (indG
H 1) ⊕ (indG

H ξ(ξg)−1). Furthermore, indG
H 1 ∼= 1 ⊕ χ ,

where χ is the character of G with kernel H , so we deduce that χ occurs in
ρ ⊗ ρ∨. But ρ is triply monomial, whence we can redo the calculation with H

replaced by the other two subgroups of index two from which ρ can be induced,
say H ′ and H ′′. Let χ ′ and χ ′′ be the characters of G with kernels H ′ and H ′′,
respectively. Then χ , χ ′, and χ ′′ all occur in ρ ⊗ ρ∨, as does the trivial character
of G. Since ρ ⊗ ρ∨ has dimension 4, we conclude that

ρ ⊗ ρ∨ ∼= 1 ⊕ χ ⊕ χ ′ ⊕ χ ′′.

Thus ρ ⊗ ρ∨ is abelian and in fact coincides with regA by Proposition 9. �

For a number field K , let ζK(s) denote the Dedekind zeta function of K .

Corollary 1. Let ρ be a two-dimensional irreducible Artin representation of Q.
There is a factorization of L(s,ρ ⊗ ρ∨) of the form

L(s,ρ ⊗ ρ∨) = ζ(s)L(s,χ)L(s,χ ′)L(s,χ ′′)
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with primitive Dirichlet characters χ , χ ′, and χ ′′ if and only if ρ is a Hecke–
Shintani representation. The characters χ , χ ′, and χ ′′ are then quadratic, cor-
responding to the three quadratic subfields of the biquadratic field K associated
with ρ. Thus L(s,ρ ⊗ ρ∨) = ζK(s).

Proof. If ρ is a Hecke–Shintani representation, then the factorization is an im-
mediate consequence of Proposition 16 and the Artin formalism for L-functions.
Conversely, suppose that the stated factorization holds, and suppose that p is a
prime not dividing the conductor of ρ. Let σp ∈ Gal(Q/Q) be a Frobenius ele-
ment at p. Examining the coefficient of p−s on both sides of the factorization, we
find

tr(ρ ⊗ ρ∨)(σp) = 1 + χ(σp) + χ ′(σp) + χ ′′(σp).

Since Frobenius elements are dense in Gal(Q/Q) and a representation is deter-
mined up to isomorphism by its character, it follows that

ρ ⊗ ρ∨ ∼= 1 ⊕ χ ⊕ χ ′ ⊕ χ ′′.
Hence Proposition 16 implies that ρ is a Hecke–Shintani representation. �

The second characterization depends on the following:

Proposition 17. Let ρ be a two-dimensional irreducible representation of a finite
group G, and let C ⊂ G be the subset of elements g ∈ G such that trρ(g) 
= 0.
Then |C|/|G| ≥ 1/4, with equality if and only if ρ is triply monomial.

Proof. We may assume without loss of generality that ρ is faithful. Now

1

|G|
∑
g∈G

| trρ(g)|2 = 1 (19)

by the orthogonality relations, and the summation can be restricted to g ∈ C.
Furthermore, since dim(ρ) = 2, we have | trρ(g)| ≤ 2 with equality if and only
if the two eigenvalues of ρ(g) are equal. The latter condition means that ρ(g) is
scalar or, equivalently (since ρ is faithful and irreducible), that g ∈ Z(G). Thus
the left-hand side of (19) is ≤ 4|C|/|G| with equality if and only if C = Z(G). It
remains to prove that C = Z(G) if and only if ρ is triply monomial.

That C = Z(G) if ρ is triply monomial follows from Propositions 9 and 7.
Conversely, suppose that C = Z(G). Then, for g ∈ G � Z(G), the eigenvalues
of ρ(g) are λ and −λ, say, and consequently ρ(g2) is scalar. Since ρ is faith-
ful, it follows that g2 ∈ Z(G). Thus the group G/Z(G) has exponent 2 and is
therefore abelian and hence of the form (Z/2Z)k for some k. It follows that
|Z(G)|/|G| = 2−k , but we are assuming that Z(G) = C, and we have already
seen that |C|/|G| = 1/4. So k = 2. We conclude that G is almost abelian by
Proposition 3, whence ρ is triply monomial by Proposition 9. �

Now suppose that ρ is a two-dimensional irreducible Artin representation of Q,
let M be the fixed field of the kernel of ρ, and put G = Gal(M/Q). Let C be
the subset of g ∈ G for which trρ(g) 
= 0, and put α = 1 − |C|/|G|. We assume



Almost Abelian Representations 143

that C 
= G, so that α > 0. Write L(s,ρ) = ∑
n≥1 ann

−s , and as in the introduc-
tion, let ϑ(x) be the number of n ≤ x such that an 
= 0. Serre has shown that
ϑ(x) ∼ cx/ logα x with c > 0 ([11], pp. 237–238). Hence Proposition 17 implies
the following:

Corollary 2. The exponent α satisfies α ≤ 3/4 with equality if and only if ρ is
a Hecke–Shintani representation.

7. Almost Abelian Groups of Degree Two

We shall classify the almost abelian groups with a faithful irreducible represen-
tation of dimension 2. If G is such a group, then Propositions 5 and 6 imply
that Z(G) is cyclic and G/Z(G) ∼= (Z/2Z)2. Conversely, if G is a finite group
such that Z(G) is cyclic and G/Z(G) ∼= (Z/2Z)2, then G is almost abelian by
Proposition 3, and from Proposition 6 it follows that G has a two-dimensional
irreducible representation, which may be assumed faithful by Proposition 4. Thus
our task is simply to classify finite groups G such that Z(G) is cyclic and
G/Z(G) ∼= (Z/2Z)2. By Proposition 1, we can restrict our attention to 2-groups
with these properties.

Let D8 and Q8 be the dihedral and quaternion groups of order 8, and for k ≥ 4,
put

N2k = 〈a, b | a2k−1 = b2 = 1, bab = a2k−2+1〉 (20)

and

DT2k = 〈z, a, b | z2k−2 = a2 = b2 = 1, aza = bzb = z, bab = z2k−3
a〉. (21)

The “N” in N2k stands for “nameless”: The standard classification of nonabelian
2-groups having a cyclic subgroup of index 2 (cf. Huppert [7], p. 91) lists four
infinite families, of which three get names; (20) does not. As for (21), among the
groups with a faithful triply monomial representation, the groups DT2k are the
only ones which are “triply generated” in the sense that they can be generated by
three elements but not by two. Thus they are “doubly triple”.

Proposition 18. Up to isomorphism, the almost abelian 2-groups with a faithful
irreducible representation of dimension 2 are D8, Q8, N2k , and DT2k , where
k ≥ 4.

Proof. It is easy to see that if G is one of these groups then Z(G) is cyclic and
G/Z(G) ∼= (Z/2Z)2. Conversely, suppose that G satisfies these conditions, and
assume first that G has a cyclic subgroup of index 2. Then G belongs to one
of the four infinite families mentioned before: Either G is a dihedral and hence
isomorphic to

D2k = 〈a, b | a2k−1 = b2 = 1, bab = a−1〉
for k ≥ 3, or G is a generalized quaternion group and hence isomorphic to

Q2k = 〈a, b | a2k−1 = 1, a2k−2 = b2, bab−1 = a−1〉
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for k ≥ 3, or G is quasidihedral and hence isomorphic to

QD2k = 〈a, b | a2k−1 = b2 = 1, bab = a2k−2−1〉
for k ≥ 4, or G ∼= N2k for k ≥ 4. However, if G is D2k , Q2k , or QD2k and k ≥ 4,
then |Z(G)| = 2, and thus |Z(G)| < |G|/4, whence G/Z(G) � (Z/2Z)2. Hence
only D8, Q8, and N2k (k ≥ 4) are almost Abelian of degree 2.

Next suppose that G does not have a cyclic subgroup of index 2, and fix a
generator z of Z(G). Since G/Z(G) ∼= (Z/2Z)2, we see that if g ∈ G � Z(G),
then g2 does not generate Z(G); otherwise, g generates a cyclic subgroup of index
2 in G. Hence g2 = z2n for some n ∈ Z, and consequently (gz−n)2 = 1. Thus the
nonidentity cosets of Z(G) in G all have representatives of order 2. Choose two
such representatives, say a and b, for distinct nonidentity cosets of Z(G). Writing
〈x〉 for the cyclic group generated by an element x, we see that

G ∼= (Z(G) × 〈a〉)� 〈b〉. (22)

If |G| = 8, then G is isomorphic to D8. Otherwise, |G| > 8, and by considering
the possible actions of 〈b〉 on Z(G) × 〈a〉 we see that G ∼= DT2k for some k ≥ 4.

�
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