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Abstract A Taniyama product for the Riemann zeta function is defined and
an analogue of Mertens’ theorem is proved.

1 Introduction

Tucked unobtrusively into Taniyama’s memoir [4] on compatible families of
`-adic representations is a curious identity expressing the zeta function of such
a family as an infinite product of imprimitive Artin L-functions ([4], p. 356,
Theorem 3). The simplest case of the identity (arising from the cyclotomic
character, or from its inverse, depending on one’s conventions) is

ζ(s− 1)/ζ(s) =
∏
c>1

ζc(s), (1)

where ζ(s) is the Riemann zeta function and ζc(s) is the imprimitive Dedekind
zeta function – imprimitive because the Euler factors at the primes dividing c
are removed – of the cyclotomic field Kc generated over Q by the cth roots of
unity. Thus ζ1(s) is ζ(s) itself, ζ2(s) is (1− 2−s)ζ(s), and so on. The infinite
product converges for <(s) > 2.

In this note we modify (1) slightly so as to obtain a product for ζ(s) rather
than ζ(s − 1)/ζ(s). Let K+

c be the maximal totally real subfield of Kc, and
let ζ+

c (s) be the Dedekind zeta function of K+
c with the Euler factors at the

primes dividing c removed. Then
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ζ(s) =
∏
c>1

ζ+
c (s+ 1). (2)

Like the traditional Euler product

ζ(s) =
∏
p

(1− p−s)−1, (3)

the Taniyama product (2) converges for <(s) > 1.
The main result of this note can be viewed as an analogue of Mertens’

theorem [2]. It bears the same relation to (2) as Mertens’ theorem does to
(3), and Mertens’ theorem itself figures prominently in the the proof. Let γ
denote the Euler-Mascheroni constant.

Theorem 1.
∏
c6x ζ

+
c (2) ∼ eγ log x.

Of course ζ+
c (2) can be computed explicitly in terms of generalized

Bernoulli numbers. For a primitive Dirichlet character χ of conductor q, let

b2,χ =
q∑
j=1

χ(j)(j2/q − j + q/6).

Also write d+
c for the discriminant of K+

c , and let ϕ(c) be the cardinality of
(Z/cZ)×. For the sake of a succinct formula we put

φ(c) =

{
ϕ(c) if c > 3
2 if c = 1 or 2.

Then

ζ+
c (2) =

πφ(c)

d+
c

3/2

∏
q|c

∗∏
χ mod q
χ(−1)=1

b2,χ
∏
p|c

(1− χ(p)p−2), (4)

where the asterisk indicates that in the second product, χ runs over primitive
characters of conductor q.

Expressions similar to (4) have arisen in other contexts. For example,
nearly the same triple product occurs in a formula of Yu [6] for the order
of a certain cuspidal divisor class group of the modular curve X1(N) (see
also Yang [5], p. 521). Even so, the differences between Yu’s formula and (4)
appear to be significant enough to preclude a straightforward interpretation
of Theorem 1 as an asymptotic average of cuspidal divisor class numbers.

It is a pleasure to thank the referee for a careful reading of the manuscript.
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2 Taniyama’s identity

A proof of (1) is of course subsumed in Taniyama’s proof of his general
formula, but we will nonetheless sketch a proof here before going on to the
modification (2). For a prime p not dividing c let f(p, c) be the order of the
residue class of p in (Z/cZ)×. Also, write Z(s) for the right-hand side of (1).
Then Z(s) can be written as the double product

Z(s) =
∏
c>1

∏
p-c

(1− p−sf(p,c))−ϕ(c)/f(p,c), (5)

where the inner product is ζc(s) and runs over primes not dividing c. The
proof of (1) amounts to reversing the order of multiplication in the double
product in (5). By choosing a branch of logZ(s) we can do the computation
additively, and the absolute convergence of the resulting triple sum in the
right half-plane <(s) > 2 will show a posteriori that the original double
product is meaningful in this region and that the calculation is legitimate.

We define our branch of logZ(s) by

logZ(s) =
∑
c>1

∑
p-c

ϕ(c)
f(p, c)

∑
m>1

p−mf(p,c)s

m
. (6)

Putting d = mf(p, c) and summing over d > 1, we obtain

logZ(s) =
∑
c>1

∑
d>1

∑
p-c

f(p,c)|d

ϕ(c)
d

p−ds

or equivalently (since f(p, c)|d if and only if pd ≡ 1 mod c)

logZ(s) =
∑
p

∑
d>1

∑
c>1

c|pd−1

ϕ(c)
d

p−ds.

As
∑
m|n ϕ(m) = n, we conclude that

logZ(s) =
∑
p

∑
d>1

d−1p−ds(pd − 1).

The inner sum equals log((1− p1−s)−1(1− p−s)), and (1) follows.
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3 The modification

The proof of (2) is much the same. Put ϕ+(c) = [K+
c : Q], so that ϕ+(c) is

1 if c = 1 or 2 and ϕ(c)/2 otherwise. (Note also that ϕ+(c) = φ(c)/2, where
φ(c) is as in the introduction.) If p is a prime not dividing c, then the order in
Gal(K+

c /Q) of a Frobenius at p will be denoted f+(p, c). Of course f+(p, c)
is also the order of the coset represented by p in the quotient of (Z/cZ)× by
the image of {±1}. Let Z+(s) denote the right-hand side of (2), and write
Z+(s) as a double product:

Z+(s) =
∏
c>1

∏
p-c

(1− p−sf
+(p,c))−ϕ

+(c)/f+(p,c). (7)

Define a branch of logZ+(s) by setting

logZ+(s) =
∑
c>1

∑
p-c

ϕ+(c)
f+(p, c)

∑
m>1

p−mf
+(p,c)s

m
. (8)

The calculation will again show that the triple sum is absolutely convergent
for <(s) > 2. Putting d = mf+(p, c) and summing over d > 1, we find

logZ+(s) =
∑
c>1

∑
d>1

∑
p-c

f+(p,c)|d

ϕ+(c)
d

p−ds

as before. But the condition f+(p, c)|d means c|pd − 1 or c|pd + 1, so we get

logZ+(s) =
∑
p

∑
d>1

∑
c|(pd±1)

ϕ+(c)
d

p−ds. (9)

We emphasize that the innermost sum is the sum over all c such that at least
one of the conditions c|pd − 1 and c|pd + 1 is satisfied.

If c > 3 then the conditions c|pd − 1 and c|pd + 1 are mutually exclusive
and ϕ+(c) = ϕ(c)/2, so we have∑

c>3

c|pd±1

ϕ+(c) =
1
2

∑
c>3

c|pd−1

ϕ(c) +
1
2

∑
c>3

c|pd+1

ϕ(c). (10)

On the other hand, if c = 1 or 2 then the conditions c|pd− 1 and c|pd + 1 are
both satisfied (for if c = 2 then p is odd), but ϕ+(c) = 1. So equation (10) is
correct without the restriction c > 3, and the identity

∑
m|n ϕ(m) = n gives
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c|(pd±1)

ϕ+(c) =
1
2

((pd − 1) + (pd + 1)) = pd. (11)

Multiplying through by p−ds/d in (11) and inserting the result in (9), we
obtain

logZ+(s) =
∑
p

log(1− p1−s)−1,

or in other words ∏
c>1

ζ+
c (s) = ζ(s− 1) (12)

for <(s) > 2. Replacing s by s+ 1 gives (2) for <(s) > 1.

4 The analogue of Mertens’ theorem

We shall prove that ∏
c6x+1

ζ+
c (2) ∼ eγ log x. (13)

Theorem 1 is an immediate consequence of (13), because log(x− 1) ∼ log x.
We proceed as in the derivation of (2), but with two crucial changes: first,

we take s = 2, and second, c now runs over the finite set of positive integers
6 x+ 1. Thus (8) is replaced by

log
∏

c6x+1

ζ+
c (2) =

∑
c6x+1

∑
p-c

ϕ+(c)
f+(p, c)

∑
m>1

p−2mf+(p,c)

m
. (14)

Next we make the change of variables d = mf+(p, c). Since c runs over a finite
set and the Dirichlet series for log ζ+

c (s) is absolutely convergent for <(s) > 1
and in particular for s = 2, we can rearrange the order of summation to
obtain

log
∏

c6x+1

ζ+
c (2) =

∑
p

∑
d>1

∑
c6x+1

c|pd±1

ϕ+(c)
p−2d

d
(15)

as in (9). For the sake of notational simplicity, we conflate the double sum
over p and d into a single sum over pd, and we put
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Φ(pd, x) =
p−2d

d

∑
c6x+1

c|pd±1

ϕ+(c). (16)

Then (15) can be written in the form

log
∏

c6x+1

ζ+
c (2) =

∑
pd>x
d>2

Φ(pd, x) +
∑
p>x

Φ(p, x) +
∑
pd6x

Φ(pd, x). (17)

We shall prove the following assertions:∑
pd>x
d>2

Φ(pd, x) = o(1). (18)

∑
p>x

Φ(p, x) = o(1). (19)

∑
pd6x

Φ(pd, x) = log
∏
p6x

(1− p−1)−1 + o(1). (20)

Granting these statements and using them in (17), we find that

log
∏

c6x+1

ζ+
c (2) = log

∏
p6x

(1− p−1)−1 + o(1),

whence exponentiation and an appeal to Mertens’ theorem give (13).
To prove (18), we first note that∑

c6x+1

c|pd±1

ϕ+(c) 6 pd. (21)

by (11). Thus Φ(pd, x) 6 p−d/d by (16), whence the left-hand side of (18) is
bounded by the sum of the terms with pd > x in the convergent double series∑
p

∑
d>2 p

−d/d. Since the tail of a convergent series is o(1), we obtain (18).
Next we prove (19). Take x > 20. It suffices to show that the sums∑

1
=

∑
x<p6x log x

Φ(p, x)

and ∑
2

=
∑

p>x log x

Φ(p, x)
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are both o(1). Appealing once again to (21) and (16), we see that∑
1
6

∑
x<p6x log x

p−1 = log(log(x log x)/(log x)) + o(1)

(cf. Chebyshev [1]). But log(log(x log x)/(log x)) = log(1 + o(1)), which is
o(1). Thus the sum

∑
1 is o(1).

For
∑

2 we revert to an earlier order of summation:∑
2

=
∑
c6x+1

ϕ+(c)
∑

p≡±1 mod c
p>x log x

p−2. (22)

We then rewrite the inner sum using Abel summation:∑
p≡±1 mod c
p>x log x

p−2 =
π(y; c,±1)

y2

∣∣∣∣∞
x log x

+2
∫ ∞
x log x

π(y; c,±1)
y3

dy, (23)

where π(y; c,±1) is the number of primes 6 y congruent to ±1 mod c. By
the strong form of the Brun-Titchmarsh theorem due to Montgomery and
Vaughan [3], we have

π(y; c,±1) 6
4y

ϕ(c) log(y/c)
. (24)

Using (24) in (23) and then inserting the result in (22), we see that∑
2
6
∑
c6x+1

8
∫ ∞
x log x

dy

y2 log(y/c)
,

the term −π(x log x; c,±1)/(x log x)2 having simply been omitted since it
is negative. For x > 20 we have (x log x)/c > e; hence the integrand is
6 y−2 and the integal is 6 (x log x)−1. It follows that the sum over c is
6 (1 + 1/x)/(log x) and thus o(1).

Finally we prove (20). The summation on the left-hand side of (20) is
restricted to pd 6 x, so if c|pd ± 1 then c 6 x + 1. Hence Φ(pd, x) coincides
with p−d/d by (11) and (16), so∑

pd6x

Φ(pd, x) =
∑
pd6x

p−d/d.

We may write this identity as∑
pd6x

Φ(pd, x) =
∑
p6x

∑
d6 log x

log p

p−d/d, (25)
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while

log
∏
p6x

(1− p−1)−1 =
∑
p6x

∑
d>1

p−d/d. (26)

Subtracting (25) from (26), we see that

log
∏
p6x

(1− p−1)−1 −
∑
pd6x

Φ(pd, x) =
∑
p6x

∑
pd>x

p−d/d (27)

If p 6 x and pd > x then d > 2, so (27) gives

log
∏
p6x

(1− p−1)−1 −
∑
pd6x

Φ(pd, x) 6
∑
pd>x
d>2

p−d/d.

The left-hand side is positive by (27), and as noted previously, the right-hand
side is the tail of a convergent double series, and therefore o(1). Hence the
left-hand side is o(1), and (20) follows.

5 The special value

For the sake of completeness, we recall the standard calculation of ζ+
c (2) in

terms of generalized Bernoulli numbers. Write ζ+
c (s) as a product of Dirichlet

L-functions associated to even Dirichlet characters to the modulus c:

ζ+
c (s) =

∏
χ mod c
χ(−1)=1

L(s, χ). (28)

We restrict attention to primitive characters by writing

ζ+
c (s) =

∏
q|c

∗∏
χ mod q
χ(−1)=1

L(s, χ)
∏
p|c

(1− χ(p)p−s). (29)

Now recall the functional equation of L(s, χ): For χ even and primitive of
conductor q, let

Λ(s, χ) = qs/2π−s/2Γ (s/2)L(s, χ); (30)

then

Λ(s, χ) = W (χ)Λ(1− s, χ), (31)
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where W (χ) is the root number of χ. On the other hand, according to a classic
formula we have L(1− k, χ) = −bk,χ/k for integers k > 2 (and actually even
for k = 1 if χ 6= 1). Taking k = 2 and applying (31), we obtain

L(2, χ) = π2b2,χW (χ)/q3/2. (32)

Next recall that if χ has order > 3 then W (χ)W (χ) = 1, while if χ2 = 1 then
W (χ) = 1. Thus on substituting (32) in (29), we obtain

ζ+
c (2) =

∏
q|c

(π2/q3/2)ψ
+(q)

∗∏
χ mod q
χ(−1)=1

b2,χ
∏
p|c

(1− χ(p)p−2), (33)

where ψ+(q) is the number of even Dirichlet characters which are primitive
of conductor q. Since

∑
q|c ψ

+(q) = ϕ+(c) we have∏
q|c

(π2)ψ
+(q) = πφ(c). (34)

Furthermore ∏
q|c

qψ
+(q) = d+

c , (35)

as one sees, for example, by observing that the exponential factor in the
functional equation of the Dedekind zeta function of K+

c is (d+
c )s/2, while

the exponential factor in (31) or rather (30) is qs/2. On substituting (34) and
(35) in (33), we obtain (4).

6 A question

For c > 3, let ξc be the quadratic Hecke character of K+
c associated to the

extension Kc/K
+
c , and let L(s, ξc) be the corresponding Hecke L-function.

Write Lc(s) for the imprimitive Hecke L-function obtained from L(s, ξc) by
deleting the Euler factors at the primes dividing c. Also put Lc(s) = 1 for
c = 1 or 2. Then Lc(s) = ζc(s)/ζ+

c (s) in all cases. Hence combining (1) with
(12), we obtain

ζ(s)−1 =
∏
c>1

Lc(s).

The infinite product converges for <(s) > 2, but 1/ζ(s) is holomorphic and
nonvanishing for <(s) > 1. Is the true region of convergence perhaps much
larger than <(s) > 2? We can offer only a minimal enlargement:
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Theorem 2. The product
∏
c>1 Lc(s) converges to ζ(s)−1 for <(s) > 2.

Proof. For integers c > 3 and primes p - c, put κ(p, c) = ξc(p), where p is a
prime ideal of K+

c lying above p. If c = 1 or 2 put κ(p, c) = 0. Then

Lc(s) =
∏
p-c

(1− κ(p, c)p−f
+(p,c)s)−ϕ

+(p,c)/f+(p,c)

for <(s) > 1, and consequently

log
∏

c6x+1

Lc(s) =
∑
c6x+1

∑
p-c

ϕ+(c)
f+(p, c)

∑
m>1

κ(p, c)m
p−mf

+(p,c)s

m
.

Making the change of variables d = mf+(p, c) as before, we obtain

log
∏

c6x+1

L+
c (s) =

∑
p

∑
d>1

∑
c6x+1

c|pd±1

ϕ+(c)κ(p, c)d/f
+(p,c) p

−ds

d

(note that the condition c|pd±1 means precisely that f+(p, c)|d). All of this is
valid for <(s) > 1, but we now assume that <(s) > 2 or simply that <(s) = 2,
since the case <(s) > 2 has already been dealt with. Put

Ψ(pd, x, s) =
p−ds

d

∑
c6x+1

c|pd±1

ϕ+(c)κ(p, c)d/f
+(p,c). (36)

Comparing (36) with (16), we see that

|Ψ(pd, x, s)| 6 Φ(pd, x). (37)

This relation will largely reduce the proof to our previous estimates. Indeed,
as in (17), we can write

log
∏

c6x+1

Lc(s) =
∑
pd>x
d>2

Ψ(pd, x, s) +
∑
p>x

Ψ(p, x, s) +
∑
pd6x

Ψ(pd, x, s),

and the first and second sums on the right-hand side are o(1) by (18), (19),
and (37). Thus to prove the theorem it suffices to show that∑

pd6x

Ψ(pd, x, s) = log ζ(s)−1 + o(1). (38)

The argument will be similar to the argument for (20).
The first point is that the condition pd 6 x in (38) renders the condition

c 6 x+ 1 superfluous in (36). Thus in the context of (38) we have
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Ψ(pd, x, s) =
p−ds

d

∑
c|pd±1

ϕ+(c)κ(p, c)d/f
+(p,c), (39)

Now suppose that c|pd±1 (in other words that f+(p, c)|d) and that c > 3. The
conditions pd ≡ −1 mod c and κ(p, c)d/f

+(p,c) = −1 are equivalent, because
both are equivalent to the assertion that f(p, c) = 2f+(p, c) and d/f+(p, c)
is odd. It follows that the complementary conditions, namely pd ≡ 1 mod c
and κ(p, c)d/f

+(p,c) = 1, are also equivalent, whence∑
c>3

c|pd±1

ϕ+(c)κ(p, c)d/f
+(p,c) =

1
2

∑
c>3

c|pd−1

ϕ(c)− 1
2

∑
c>3

c|pd+1

ϕ(c). (40)

As before, the restriction c > 3 can be eliminated throughout (40), because
if c = 1 or 2 then κ(p, c) = 0.

With the restriction c > 3 removed, (40) implies that∑
c|pd±1

ϕ+(c)κ(p, c)d/f
+(p,c) =

1
2

((pd − 1)− (pd + 1)) = −1,

and therefore (39) gives

∑
pd6x

Ψ(pd, x, s) = −
∑
p6x

∑
d6 log x

log p

p−ds

d
. (41)

On the other hand,

log ζ(s)−1 = −
∑
p

∑
d>1

p−ds

d
(42)

Taking the absolute value of the difference of (41) and (42), we find

|
∑
pd6x

Ψ(pd, x, s)− ζ(s)−1| 6
∑
pd>x

p−ds

d
.

Since <(s) > 2 the right-hand side is the tail of a convergent series (namely
the Dirichlet series for log ζ(s)) and is therefore o(1). Thus (38) follows and
the proof of the theorem is complete.
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