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Abstract. For a fixed CM field K with maximal totally real subfield F , we
consider isomorphism classes of dihedral Artin representations of F which are

induced from K, distinguishing between those which are “canonically” induced

from K and those which are “noncanonically” induced from K. The latter can
arise only for Artin representations with image isomorphic to the dihedral

group of order 8. We show that asymptotically, the number of noncanonically
induced isomorphism classes is always comparable to and in some cases exceeds

the number of canonically induced ones.

A standard problem in arithmetic statistics is to count the Galois extensions of
F of some fixed type, where F is a given number field. Less standard perhaps are
comparisons between the asymptotic formulas obtained for two different counting
problems associated to F , but such comparisons can be instructive. A case in point
is the recent paper of Friedrichsen and Keliher [7]. Let Dm denote the dihedral
group of order 2m and Sm the symmetric group on m letters. Friedrichsen and
Keliher compare the asymptotic formula for D4-extensions due to Cohen, Diaz y
Diaz, and Olivier [5] with the asymptotic formula for S4-extensions due to Bhargava,
Shankar, and Wang [4]. In both cases, the objects counted are nonnormal quartic

extensions M of F with NdM/F 6 x and Gal(M̃/F ) ∼= D4 or Gal(M̃/F ) ∼= S4

respectively, where M̃ denotes the normal closure of M over F , N is the absolute
norm, and dM/F is the relative different ideal of M/F . (Note that NdM/F coincides
with the absolute norm of the relative discriminant ideal ofM/F .) In contrast to the

case F = Q, where Bhargava’s fundamental work [3] shows that Gal(M̃/Q) ∼= S4

for approximately 83% of quartic extensions M of Q while Gal(M̃/Q) ∼= D4 for
only about 17%, Friedrichsen and Keliher prove the surprising result that for most
imaginary quadratic fields, the D4-quartic extensions dominate, and indeed can
exceed the S4-quartic extensions by an arbitrarily large factor. The asymptotic
formulas quoted from [5] and [4] by Friedrichsen and Keliher involve the residue at
s = 1 of the Dedekind zeta function of the quadratic extensions of F , and a large
part of the work in [7] is devoted to estimating these residues.

The present note also involves D4-extensions and makes reference to [5]. However
the comparison is not with S4-extensions but rather with other Dm-extensions,
and instead of nonnormal quartic extensions the objects to be counted are dihedral
Artin representations, an irreducible two-dimensional representation being called
dihedral if its image is isomorphic to Dm for some m > 3. The leading coefficients
in the two asymptotic formulas to be compared will turn out to differ only by an
elementary factor, obviating the need for delicate estimates of residues of Dedekind
zeta functions. But one of the two asymptotic formulas cannot simply be quoted
from the literature, and most of this article is devoted to deriving it.
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To describe the contents of this note more systematically, we start with a simple
group-theoretic fact: If m 6= 4 then the faithful irreducible representations of Dm

can be monomially induced only from the unique cyclic subgroup of index 2 in Dm,
but if m = 4 then they – or rather it, since up to isomorphism there is only one
– can also be induced from either of the two noncyclic subgroups of index 2. Now
fix a CM field K, let F be the maximal totally real subfield of K, and consider a
dihedral Artin representation ρ of F induced from K. Let L be the fixed field of
the kernel of ρ, so that ρ may be viewed as a faithful representation of Gal(L/F ).
If Gal(L/K) is the cyclic subgroup of index 2 in Gal(L/F ) then we say that ρ is
canonically induced from K, a condition which is automatically satisfied if the image
of ρ is Dm with m 6= 4. But if m = 4 then it can happen that ρ is noncanonically
induced from K, in other words, that Gal(L/K) is noncyclic. Let ∆can

K/F be the set

of isomorphism classes of dihedral Artin representations of F which are canonically
induced from K, and let ∆non

K/F be the corresonding set with “canonically induced”

replaced by “noncanonically induced.” Also, let δcanK/F (x) and δnonK/F (x) denote the

number of elements of ∆can
K/F and ∆non

K/F respectively with conductor of absolute

norm 6 x. Let dF denote the discriminant of F and dK/F the absolute norm of the
relative discriminant of K/F . Put n = [F : Q].

Theorem 1.

δcanK/F (x) ∼
√
dF /dK/F

2 · (2π)n
· ress=1ζK(s)

ζK(2)
· x.

We emphasize that Theorem 1 applies only to quadratic CM extensions K of
F , not to arbitrary quadratic extensions of F . This restriction is essential to our
method, because we count canonically induced dihedral Artin representations by
counting the inducing idele class characters, and such characters are subject to two
conditions which mesh well only when K is CM: On the one hand, if K/F is any
quadratic extension then an idele class character χ of K of order > 3 induces a
dihedral representation of F (of necessity canonically) if and only if the restriction
of χ to the ideles of F is trivial. On the other hand, the obstacle to constructing
idele class characters of any sort is that they must be trivial on the principal ideles,
and in particular – the crucial point – on the global units. In general this property is
hard to achieve, but in the case of a CM extension K of F , and only in this case, the
unit group of F is of finite index in the unit group of K. Thus the triviality of χ on
the ideles of F , necessary to ensure a canonically induced dihedral representation,
largely takes care of the required triviality of χ on the global units.

For any number field F , let δF (x) be the number of isomorphism classes of
dihedral Artin representations ρ of F such that the absolute norm of the conductor
of ρ is 6 x. The distinction between “canonical” and “noncanonical” induction
now evaporates, because the distinction is not intrinsic to ρ: Every dihedral ρ
is canonically induced from some quadratic extension of F . A glaring weakness in
Theorem 1 is that it does not give an asymptotic formula for δF (x). Such a formula
is known only for F = Q, where Siegel’s asymptotic averages of class numbers of
primitive binary quadratic forms over Z give δQ(x) ∼ πx3/2/(6ζ(3))2 (see [14] and
Theorem 2 of [11]). A crude heuristic based on Theorem 1 suggests that for an
arbitrary totally real number field F , we have at least δF (x) � x3/2 (sum over
all quadratic CM extensions K of F , ignoring the difficulties). Admittedly, the
heuristic takes account only of CM extensions F , but this limitation shouldn’t
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matter: When F = Q the asymptotic for δQ(x) is unchanged if we count only
dihedral representations induced from imaginary quadratic fields.

Let us now return to the theme of comparing asymptotic formulas. We shall
compare δcanK/F (x) and δnonK/F (x), but to put our comparison in perspective, take

F = Q for a moment and consider all Artin representations of Q with image D4,
not just those noncanonically induced from a particular imaginary quadratic field
K. Let δQ,D4(x) be the number of isomorphism classes of all such representations
with conductor 6 x. Then a recent result of Altuğ, Shankar, Varma, and Wilson
[1] shows that δQ,D4

(x) ∼ cx log x for some c > 0. Thus the rate of growth is much
lower than for δQ(x). Nonetheless, by combining Theorem 1 with a result in [5],
we obtain the following statement, where K is again an arbitrary CM field with
maximal totally real subfield F :

Theorem 2.

δnonK/F (x) ∼ πn√
dK/F dF

δcanK/F (x).

It follows that a positive proportion of dihedral Artin representations of F in-
duced from K are noncanonically induced. In fact if F = Q and K = Q(

√
−d) with

d = 3, 4, 7, or 8 then the number of isomorphism classes which are noncanonically
induced from K is asymptotically greater than the total number of isomorphism
classes which are canonically induced from K, including the canonically induced
isomorphism classes with image D4. But it must be added that if n is sufficiently
large then πn <

√
dK/F dF . This follows from various lower bounds for dF in the

literature. For example, Theorem 1 of Odlyzko [9] gives dF > 55n if n is sufficiently

large, whence πn/
√
dK/F dF 6 (π/

√
55)n < 1. And even for small n, if F is fixed

then there are at most finitely many K such that πn/
√
dK/F dF > 1.

It is a pleasure to thank the referee for several helpful comments.

1. Notation and conventions

Given a number field X, let OX denotes its ring of integers, ζX(s) its Dedekind
zeta function, AX its ring of adeles, and A×X its group of ideles. We write hX and
RX for the class number and regulator of X and and wX for the number of roots
of unity in X. Also, if Y/X is an extension of number fields then dY/X denotes the
relative different ideal of Y/X, and we put dY/X = NdY/X , writing simply dY and
dY if X = Q. In particular, the well-known identity

(1) dY = dY/Xd
[Y :X]
X

follows from the relation dY = dY/XdX on taking absolute norm of both sides.
If q is a nonzero integral ideal of X, then CX(q) denotes the wide ray class group

of X modulo q. By definition,

(2) CX(q) = IX(q)/PX,q,

where IX(q) is the multiplicative group of fractional ideals of X which are relatively
prime to q and PX,q is the subgroup of principal fractional ideals with a generator
α ≡ 1 mod∗q. The order of CX(q) will be denoted hX(q). Thus

(3) hX(q) = hX · ϕX(q)/[O×X : O×X(q)]

(cf. [8], p. 127), where ϕX(q) = |(OX/q)×| and O×X(q) is the subgroup of O×X
consisting of units u ≡ 1 mod q.
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Write r1 for the number of real embeddings X ↪→ R of X and 2r2 for the
number of nonreal complex embeddings X ↪→ C, so that r1 + 2r2 is the degree of
X over Q. If r1 > 0 then one has the notion of the narrow ray class group of X
modulo q, which we denote Cnar

X (q). Let P nar
X,q be the subgroup of PX,q consisting

of principal fractional ideals with a generator α ≡ 1 mod∗q satifying σ(α) > 0 for
every embedding σ : X ↪→ R. Then Cnar

X (q) is equal to the right-hand side of (2)
with PX,q replaced by P nar

X,q. If r1 = 0 then one can define the narrow ray class
group of X modulo q in the same way, but the group so defined is indistinguishable
from the wide ray class group modulo q.

By an idele class character of X we mean as usual a continuous homomorphism
χ : A×X → C× trivial on the diagonally embedded subgroup X× of A×X . We write
q(χ) for the conductor of χ and put q(χ) = Nq(χ). If χ has finite order then
it is canonically identified with a primitive character of Cnar

X (q(χ)), or simply of
CX(q(χ)) if X is totally complex. The identification is encapsulated in the equation

χv(πv) = χ(pv),

in which χ has different meanings on the two sides of the equation: On the left-hand
side, χv is the local component of the idele class character χ at a finite place v of
X where χ is unramified, and πv is a uniformizer of the completion Xv of X at v.
On the right-hand side, χ is the corresponding primitive ray class character, and
pv is the prime ideal of OX corresponding to v.

Let X denote an algebraic closure of X. An Artin representation of X is a con-
tinuous homomorphism ρ : Gal(X/X) → GL(V ), where V is a finite-dimensional
vector space over C. In particular, a one-dimensional Artin representation of F
can be viewed as a continuous homomorphism χ : Gal(X/X)ab → C×, where
Gal(X/X)ab is the abelianization of Gal(X/X). Via class field theory we identify
such characters χ with idele class characters of X of finite order, or equivalently
with primitive ray class characters.

We have already introduced the notation q(χ) for the conductor of an idele
class character χ of X, and in view of the preceding remarks, the notation extends
to one-dimensional Artin representations of X. More generally, if ρ is an Artin
representation of X of any dimension then q(ρ) denotes its conductor. We also put
q(ρ) = Nq(ρ) just as we put q(χ) = Nq(χ) for an idele class character χ of X.

2. CM fields

Throughout the rest of this note, K is a CM field and F its maximal totally
real subfield. Thus K = F (δ), where δ /∈ F but δ2 is a totally negative element of
F . It follows that if τ is the nontrivial element of Gal(K/F ) and z = x + δy with
x, y ∈ F , then for any embedding σ : K ↪→ C,

σ(τ(z)) = σ(x)− σ(δ)σ(y) = σ(z).

Thus while there is no canonical embedding of K into C, there is also no ambiguity
in writing τ(z) simply as z.

A standard invariant of K as a CM field is the group index

QK = [O×K : µKO×F ],

where µK is the group of roots of unity in K. If u ∈ O×K then u/u is a unit with
absolute value 1 in every embedding K ↪→ C; hence u/u ∈ µK . It is a well-known
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and easily verified remark that the map from O×K/(µKO
×
F ) to µK/µ

2
K sending the

coset of u to the coset of u/u is injective, whence QK is 1 or 2.
Let q be a nonzero ideal of OF . The map a 7→ aOK from IF (q) to IK(qOK) sends

PF,q to PK,qOK
and so gives rise to a map CF (q)→ CK(qOK) which we shall refer

to as the conorm (on ray class groups). In the same way we could define a conorm
from Cnar

F (q) to CK(qOK), but since the latter conorm would factor through the
quotient map from Cnar

F (q) to CF (q), its image in CK(qOK) would be the same,
and it is precisely the size of the image which is our primary concern.

Proposition 1. For all but finitely many nonzero ideals q of OF , the conorm

CF (q)→ CK(qOK)

is injective. In fact let m > 2 be the largest integer such that the mth roots of unity
are contained in K. If the conorm is not injective then q divides mOF .

Proof. Suppose that there is an element c 6= 1 in the kernel of the conorm, and
choose an integral ideal a ∈ c. Then aOK is generated by an element α ≡ 1 mod
qOK . As aOK = αOK it follows that α/α is a unit of OK and in fact a root of
unity, because |σ(α/α)| = 1 for every embedding σ : K ↪→ C. Thus

(4) α = ζ α,

where ζ is a root of unity. Then ζ 6= 1, else α ∈ F and c = 1, a contradiction. On
the other hand, α ≡ 1 mod qOK and consequently α ≡ 1 mod qOK also, whence
ζ ≡ 1 mod qOK by (4). In other words, q divides 1−ζ. Now let ξ denote a primitive
mth root of unity in K. Then 1 − ζ is one of the factors on the left-hand side of
the equation

m−1∏
j=1

(1− ξj) = m,

whence q divides m. �

3. Kef characters

We remind the reader that K always denotes a CM field and F its maximal
totally real subfield. By a K/F -character we mean an idele class character of K
of finite order which is trivial on the ideles of F . If K is imaginary quadratic
then the classical name for a K/F -character is ring class character, and if χ factors
through Gal(K∞/K) for some Zp-extension K∞ of K then the term anticyclotomic
character is also in use, although the appropriateness of this designation really
depends on the validity of Leopoldt’s conjecture for F . A K/F -character could
also be called a kef character, “kef” being a synonym for “bliss” and an acronym
for “K effacing F .” Whatever the terminology, the defining property of such finite-
order characters χ is that χ|A×F = 1.

Like any idele class character of K of finite order, a K/F -character can be
identified with a character χ : Gal(K/K)ab → C×. The identity χ|A×F = 1 then

becomes χ ◦ tranK/F = 1, where tranK/F : Gal(F/F )ab → Gal(K/K)ab is the

transfer from Gal(F/F ) to Gal(K/K) and we take K = F . Thus in the Galois
framework a K/F -character is a character of Gal(K/K)ab trivial on the image of
the transfer from Gal(F/F )ab. There is also a characterization in terms of primitive
ray class characters, but it depends on the following simple remark.
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Proposition 2. If χ is a K/F -character then q(χ) = qOK for some nonzero ideal
q of OF .

Proof. This is routine and can also be deduced from a general theorem of Serre
[13], but we briefly recall the argument. Write a(χw) for the conductor-exponent
of the component of χ at a finite place w of K, and let v be the place of F below
w. There are two points to be verified:

• If v splits in K, so that there is a second place w above v, then a(χw) =
a(χw).
• If v ramifies in K then a(χw) is even.

In the case where v splits, observe that the condition χ|A×F = 1 implies that
for z ∈ F×v we have χw(z)χw(z) = 1. As Kw and Kw can be identified with Fv
and hence with each other, it is meaningful to write χw = χ−1w , and consequently
a(χw) = a(χw).

In the case where v ramifies, let π ∈ Fv be a uniformizer of the ring of integers
Ov of Fv. Suppose that a(χw) is an odd integer n. Then π(n−1)/2 has w-valuation
n− 1, and consequently χw(1 + xπ(n−1)/2) 6= 1 for some x ∈ Ov, contradicting the
fact that χ|A×F = 1. �

We can now transfer the previous discussion to ray class groups. Let q be a
nonzero ideal of OF . We say that a primitive ray class character of K of conductor
qOK is a K/F -character if it is trivial on the image of the conorm from CF (q) to
CK(qOK). Equivalently, we could demand triviality on the image of the conorm
from Cnar

F (q) to CK(qOK), because as previously noted, the latter conorm has
the same image. The main point is that the condition for a primitive ray class
character to be a K/F -character matches the condition already given for idele class
characters.

The next observation is that the K/F -characters of conductor dividing qOK are
in one-to-one correspondence with the characters of the quotient group

(5) CK/F (q) = CK(qOK)/(image of CF (q)).

Let hK/F (q) be the order of CK/F (q). Then hK/F (q) is also the number of K/F -
characters of conductor dividing qOK .

Proposition 3. For all but finitely many nonzero ideals q of OF ,

hK/F (q) =
hK/F · ϕK/F (q)

uK/F
,

where hK/F = hK/hF , uK/F = [O×K : O×F ], and ϕK/F (q) = ϕK(qOK)/ϕF (q).

Proof. We have seen (Proposition 1) that for all but finitely many q the conorm
from CF (q) to CK(qOK) is injective, and when the conorm is injective we can
combine (5) and (3) to obtain

hK/F (q) = hK/F · ϕK/F (q) ·
[O×F : O×F (q)]

[O×K : O×K(qOK)]
.

Thus it suffices to see that

(6) uK/F =
[O×K : O×K(qOK)]

[O×F : O×F (q)]

for all but finitely many q.
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A sufficient condition for the validity of (6) is

(7) O×F (q) = O×K(qOK),

for (7) implies that the natural map

O×F /O
×
F (q)→ O×K/O

×
K(qOK)

is injective with cokernel O×K/O
×
F . Suppose that contrary to (7), there exists u ∈

O×K(qOK) such that u 6= u. Then u/u is a root of unity ζ 6= 1, and reprising an
argument in the proof of Proposition 1, we see that q divides 1 − ζ and therefore
also m, where m is the largest integer > 2 such that K contains µm. Hence the set
of q such that (7) fails is finite. �

4. An asymptotic formula

Let ϑK/F (x) be the number of K/F -characters χ with q(χ) 6 x. Our goal is
an asymptotic formula for ϑK/F (x). As we have already remarked, hK/F (q) is the
number of K/F -characters of conductor dividing qOK . Let h∗K/F (q) be the number

of K/F -characters of conductor precisely qOK . Then hK/F (q) and h∗K/F (q) are

related by the equations

(8) hK/F (q) =
∑
r|q

h∗K/F (r)

and

(9) h∗K/F (q) =
∑
r|q

hK/F (q/r)µF (r),

where r runs over ideals of OF dividing q and µF is the Möbius function of F ,
defined by

ζF (s)−1 =
∑
r

µF (r)(Nr)−s.

But the main point is that ϑK/F (x) can be expressed in terms of h∗K/F (q): Since

N(qOK) = (Nq)2, we have

(10) ϑK/F (x) =
∑

(Nq)26x

h∗K/F (q),

where the sum runs over nonzero ideals q of OF with absolute norm 6
√
x.

Next consider the formal Dirichlet series

(11) HK/F (s) =
∑
q

hK/F (q)(Nq)−2s

and

(12) H∗K/F (s) =
∑
q

h∗K/F (q)(Nq)−2s,

which by virtue of (8) and (9) satisfy

(13) HK/F (s) = ζF (2s)H∗K/F (s).

We shall rewrite (11) and (12) using Proposition 3.
We begin with the tautology

(14) HK/F (s) = H(s) + E(s),
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where in the notation of Proposition 3,

H(s) = (hK/F /uK/F )
∑
q

ϕK/F (q)(Nq)−2s

and

E(s) =
∑
q

(hK/F (q)− (hK/F /uK/F )ϕK/F (q))(Nq)−2s

(for notational simplicity we do not append a subscript K/F on H and E). The
significance of (14) is that E(s) is a finite Dirichlet series by Proposition 3 while
H(s) has an Euler product, as we shall now see.

By the Chinese remainder theorem, both q 7→ ϕF (q) and q 7→ ϕK(qOK) are
multiplicative functions of q, so q 7→ ϕK/F (q) is also. Hence

(15) H(s) = (hK/F /uK/F )
∏
p

(1 +
∑
k>1

ϕK/F (pk)(Np)−2ks),

where p runs over nonzero prime ideals of OF . Let κ be the primitive quadratic
ray class character of F corresponding to the extension K/F . By considering cases
according as p splits, remains prime, or ramifies, we find that

ϕK/F (pk) =
|(OK/pkOK)×|
|(OF /pk)×|

= (Np− κ(p))(Np)k−1.

Thus (15) can be rewritten:

H(s) = (hK/F /uK/F )
∏
p

(1 + (1− κ(p)/Np)
∑
k>1

(Np)k(1−2s))

Since

1 + (1− κ(p)/Np)
(Np)(1−2s)

1− (Np)(1−2s)
=

1− κ(p)(Np)−2s

1− (Np)1−2s
,

our expression for H(s) simplifies:

H(s) = (hK/F /uK/F )ζF (2s− 1)/L(2s, κ).

Finally, returning to (14) and then to (13), we have

(16) HK/F (s) = (hK/F /uK/F )ζF (2s− 1)/L(2s, κ) + E(s)

and

(17) H∗K/F (s) = (hK/F /uK/F )ζF (2s− 1)/ζK(2s) + E(s)/ζF (2s)

after using the factorization ζK(s) = ζF (s)L(s, κ).
While HK/F (s) and H∗K/F (s) were originally introduced in (11) and (12) as

formal Dirichlet series with nonnegative coefficients, we see from (16) and (17) that
these Dirichlet series are absolutely convergent for <(s) > 1. Furthermore, since
E(s) is a finite Dirichlet series and therefore entire, it also follows that HK/F (s)
and H∗K/F (s) are holomorphic for <(s) > 1/2 except for simple poles at s = 1. We

shall compute the residue of H∗K/F (s) at s = 1.

Proposition 4. Put n = [F : Q]. Then

ress=1H
∗
K/F (s) =

√
dK/F dF

(2π)n
· ress=1ζK(s)

ζK(2)
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Proof. The residue of ζF (2s − 1) at s = 1 is half the residue of ζF (s). Hence the
class number formula gives

(18)
ress=1ζF (2s− 1)

ress=1ζK(s)
=

2n−1hFRF /(wF
√
dF )

(2π)nhKRK/(wK
√
dK)

.

Now if | ∗ |1, | ∗ |2, . . . , | ∗ |n−1 are n− 1 of the n archimedean absolute values of F
and ε1, ε2, . . . , εn−1 are coset representatives modulo {±1} of a basis for O×F /{±1}
then RF is the absolute value of the determinant of the (n− 1)× (n− 1) regulator
matrix:

RF = |det(log |εj |k)|
(1 6 j, k 6 n − 1). To compute RK one multiplies each entry log |εj |k by 2 and
then divides the determinant by QK . Hence RK = 2n−1RF /QK , and (18) becomes

ress=1ζF (2s− 1)

ress=1ζK(s)
=
QK(wK/wF )(

√
dK/
√
dF )

hK/F (2π)n
.

But dK = dK/F d
2
F by (1) and uK/F = QK(wK/wF ), so we get

(hK/F /uK/F )ress=1ζF (2s− 1) =

√
dK/F dF

(2π)n
ress=1ζK(s).

Now the stated formula follows from (17). �

Recognizing from (10) and (12) that ϑK/F (x) is the summatory function of
H∗K/F (s), and applying a standard tauberian theorem (e. g. Theorem 7.7 on p. 154

of [2]), we obtain:

Theorem 3.

ϑK/F (x) ∼
√
dK/F dF

(2π)n
· ress=1ζK(s)

ζK(2)
· x.

5. Artin representations

As usual, we say that an idele class character ν of a number field X is quadratic if
ν2 = 1 but ν 6= 1. We write λX(x) for the number of quadratic idele class characters
ν of X with q(ν) 6 x. Equivalently, λX(x) is the number of quadratic extensions
Y of X in some fixed algebraic closure X such that dY/X 6 x. Or we could define
λX(x) to be the number of quadratic extensions Y of X such that NDY/X 6 x,
where DY/X is the discriminant ideal of Y/X. Of course the equivalence of the
three definitions follows from the fact that if ν corresponds to Y then

q(ν) = DY/X = NY/X(dY/X),

where NY/X is the norm map on ideals. We shall think of λX(x) as counting
quadratic characters, but the other interpretations put the asymptotic formulas
of Datskovsky and Wright [6] and of Cohen, Diaz y Diaz, and Olivier [5] at our
disposal.

The version proved in [5] is particularly convenient for our purposes. In the case
of a CM field K of degree 2n it takes the form

(19) λK(x) ∼ 2−n · ress=1ζK(s)

ζK(2)
· x

(Corollary 1.2 of [5]). Thus in light of Theorem 3 we have:
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Theorem 4.

λK(x) ∼ πn√
dK/F dF

ϑK/F (x).

However Theorems 3 and 4 do not yet refer to dihedral Artin representations. To
move in that direction, we let λK/F (x) be the number of quadratic K/F -characters
ν with q(ν) 6 x, and we introduce the functions

(20) ϑ(x) = (ϑK/F (x)− λK/F (x)− 1)/2

and

(21) λ(x) = (λK(x)− λK/F (x))/2.

The function λK/F (x) is from our point of view an error term, and ϑ(x) and λ(x)
are closely related to the functions δcanK/F (x) and δnonK/F (x) of the introduction. In

fact we shall prove:

Proposition 5. λK/F (x) = O(
√
x).

Proposition 6. δcanK/F (x) = ϑ(x/dK/F ).

Proposition 7. δnonK/F (x) = λ(x/dK/F ).

Granting these three propositions, let us deduce Theorems 1 and 2. Inserting
(20) in Theorem 3 and applying Proposition 5, we see that

(22) ϑ(x) ∼
√
dK/F dF

2 · (2π)n
· ress=1ζK(s)

ζK(2)
· x.

Theorem 1 now follows from (22) and Proposition 6. To obtain Theorem 2, we
insert (20) and (21) in Theorem 4 and apply Proposition 5. The result is

(23) λ(x) ∼ πn√
dK/F dF

ϑ(x).

Theorem 2 follows from (23) and Propositions 6 and 7.
It remains to prove Propositions 5, 6, and 7.

6. Proof of Proposition 5

Let NK/F : A×K → A×F be the adelic norm. Also, write κ for the quadratic idele
class character of F corresponding to the extension K/F . The proof of Proposition
5 is based on the following remark.

Proposition 8. An idele class character χ of K is a quadratic K/F -character if
and only if χ = ψ ◦ NK/F for some quadratic idele class character ψ of F with
ψ 6= κ.

Proof. This is standard, at least when K is imaginary quadratic (cf. [12], §7). The
argument in general is the same, but we nonetheless recall it.

Suppose first that χ = ψ ◦NK/F with ψ as stated. Then χ 6= 1 because ψ 6= κ.

Therefore χ is quadratic. Now if a ∈ A×F then NK/F (a) = a2, so χ(a) = ψ(a2) =

ψ(a)2 = 1. Hence χ|A×F = 1 and χ is a K/F -character.

Conversely, suppose that χ is a quadratic K/F -character. Since χ|A×F = 1
we have χ ◦ NK/F = 1, and of course χ|K× = 1 also. Thus viewing χ as a

character of A×/K×, we have χ(aτ+1) = 1 for all a ∈ A×K/K×, where τ denotes
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the automorphism of A×K/K× corresponding to the nontrivial element of Gal(K/F ).
But since χ is quadratic we also have χ(a2) = 1, whence χ(aτ−1) = 1. By class field
theory (specifically, the vanishing of the Galois cohomology group H1(A×K/K×)) it

follows that χ is trivial on the kernel of NK/F , now viewed as a map from A×K/K×

to A×F /F×. Therefore χ factors through NK/F to give a character ψ on the image

of NK/F in A×F /F× such that χ = ψ ◦ NK/F . The image of NK/F has index 2

in A×F /F×, and extending ψ to A×F /F×, we obtain an idele class character of F ,

which we will also denote ψ. If a ∈ A×F then 1 = χ(a) = ψ(a2) = ψ(a)2, so ψ is
quadratic. �

Given a quadratic K/F -character χ, let ψ be a quadratic idele class character
of F such that χ = ψ ◦NK/F . The existence of ψ follows from Proposition 8, and
we now claim that

(24) q(ψ) 6 c
√
q(χ)

with a constant c depending only on K. Granting the claim, we have λK/F (x) 6
λF (c

√
x), a bound which in combination with the asymptotic

λF (x) ∼ ress=1ζF (s)

ζF (2)
· x

(Corollary 1.2 of [5]) gives Proposition 5. So to complete the proof of the latter
proposition it suffices to verify (24).

Put c = 8ndK/F , and let q(ψ) = t · r · u be the unique decomposition of q(ψ) as
a product of ideals t, r, and u of OF satisfying the following conditions:

(i) The prime ideals dividing t have residue characteristic 2.
(ii) The prime ideals dividing r have odd residue characteristic and are ramified

in K.
(iii) The prime ideals dividing u have odd residue characteristic and are unram-

ified in K.

To verify (24), it suffices to prove the following assertions:

(i) t divides 8OF .
(ii) r divides DK/F , the discriminant ideal of K/F .
(iii) uOK divides q(χ).

Indeed (i), (ii), and (iii) imply respectively that Nt divides 8n, that Nr divides
dK/F , and that (Nu)2 divides q(χ), whence

q(ψ) = (Nt)(Nr)(Nu) 6 c
√
q(χ),

proving (24).
To prove (i), let p be a prime dividing t. It is a standard remark that the

multiplicity of a prime ideal p of residue characteristic 2 in the conductor of any
quadratic character of F is 6 2e(p) + 1, where e(p) is the ramification index of p
over 2 ∈ Q. Thus t divides the ideal

t′ =
∏
p|t

p2e(p)+1.

But t′ divides the ideal ∏
p|2OF

p3e(p) = (2OF )3,

in other words 8OF .
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To prove (ii), let p be a prime dividing r. Since p has odd residue characteristic
and ψ is quadratic, the multiplicity of p in q(ψ), and hence in r, is 1. On the other
hand, since p is ramified in K it divides DK/F . Since p is an arbitrary prime divisor
of r, it follows that r divides DK/F .

To prove (iii), let p be a prime dividing u, let P be a prime of K lying above p,
let Fp and KP be the respective completions, and let Op and OP be their rings of
integers. Since KP is unramified over Fp, the norm from O×P to O×p is surjective,
whence the local component at P of χ = ψ◦NK/F is ramified, because ψ is ramified
at p. So P divides q(χ). On the other hand, the multiplicity of p in u is 1, because
ψ is quadratic and p has odd residue characteristic. As uOK is just the product of
the prime ideals P lying above the prime divisors p of u, it divides q(χ).

7. Proof of Proposition 6

The expresssion ϑK/F (x) − λK/F (x) − 1 is the number of K/F -characters χ of

order > 3 with q(χ) 6 x. Hence ϑ(x) is the number of unordered pairs {χ, χ−1}
where each such character is paired with its complex conjugate. And ϑ(x/dK/F )
is the number of such unordered pairs with dK/F q(χ) 6 x. Let ρ be the Artin
representation of F induced by χ; we write ρ = indK/Fχ. By the conductor-
discriminant formula, q(ρ) = dK/F q(χ).

Write τ for the nontrivial element of Gal(K/F ) and also for the automorphism
of A×K it affords. The fact that χ(a1+τ ) = 1 for a ∈ A×K means that χ(aτ ) =

χ−1(a), and consequently (after viewing χ as a character of Gal(F/K) and lifting
τ to Gal(F/F )) that χ(τgτ−1) = χ−1(g) for g ∈ Gal(K/K). Thus indK/Fχ =

indK/Fχ
−1. If we put ρ = indK/Fχ as before and let L be the fixed field of the

kernel of ρ then [L : F ] = 2m, where m > 3 is the order of χ. Thus Gal(L/K) is
cyclic of index 2 in Gal(L/F ).

To conclude that ρ is a dihedral Artin representation of F canonically induced
from K, recall that the condition χ|A×F = 1 for idele class characters is equivalent

to the condition χ ◦ tranK/F = 1 for characters of Gal(F/F ). Now it is a standard
remark (cf. Propositions 5.3 and 5.4 of [10]; I learned these facts from lectures
of Serre long ago) that the condition χ ◦ tranK/F = 1, or in other words the
condition that χ be a K/F -character, is precisely the condition for ρ = indK/Fχ

to be dihedral. Furthermore, by Frobenius reciprocity χ and χ−1 are the only
characters of Gal(K/K) inducing the isomorphism class of ρ. So we obtain a
bijection between the unordered pairs {χ, χ−1} counted by ϑ(x/dK/F ) and the
isomorphism classes of dihedral Artin representations counted by δcanK/F (x).

8. Proof of Proposition 7

The first point is that if Q is a quadratic extension of K which is Galois over
F then Gal(Q/F ) ∼= (Z/2Z)2. Indeed if τ ∈ Gal(Q/F ) is any complex conjugation
corresponding to an archimedean embedding of Q then {τ, 1} is a subgroup of
Gal(Q/F ) which is complementary to Gal(Q/K).

Thus if Q is Galois over F then there is a quadratic extension R of F such that
Q is the compositum of K and R. Let ψ be the quadratic idele class character of
F corresponding to the extension R. Then ψ ◦ NK/F is the quadratic idele class
character of K corresponding to Q, and from Proposition 8 we see that ψ ◦NK/F
is a quadratic K/F -character. Conversely, Proposition 8 also shows that if χ is a
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quadratic K/F -character then χ = ψ◦NK/F for some ψ as above, and therefore the

extension Q of K corresponding to χ is Galois over F with Galois group (Z/2Z)2.
It follows that the expression λK(x) − λK/F (x) is precisely the number of qua-

dratic idele class characters χ of K with q(χ) 6 x such that the corresponding
quadratic extension Q of K is not Galois over F . The normal closure of Q over F
is then a field L with Gal(L/F ) ∼= D4, and the representation ρ = indK/Fχ is the
irreducible 2-dimensional representation of Gal(L/F ), unique up to isomorphism.
Furthermore, ρ is noncanonically induced from K because Gal(L/K) ∼= (Z/2Z)2.

The map χ 7→ ρ = indK/Fχ is two-to-one by Frobenius reciprocity, because the
two characters occurring in the restriction of ρ to Gal(L/K), say χ and χ′, both
induce ρ. The number of such unordered pairs {χ, χ′} with q(χ) = q(χ′) 6 x is
λ(x). But q(ρ) = dK/F q(χ), so δnonK/F (x) = λ(x/dK/F ).
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