
AVERAGE MULTIPLICITIES

DAVID E. ROHRLICH

This note summarizes my talk at the ICERM workshop on Murmurations and
Arithmetic, June 6 to June 8, 2023. The talk was based on the paper [14], to which
the reader is referred for details and proofs. The two addenda at the end appeared
neither in the talk nor in [14] but are complementary to both.

It is a pleasure to thank ICERM and the organizers of the workshop for inviting
me to participate in a meeting that was both enjoyable and productive.

1. The talk

A lack of competence prevents me from saying anything about murmurations,
but my hope is that those who do have the competence may perhaps find something
worth exploring in my topic. We consider an irreducible Artin representation of
Q, say ρ, which should be thought of as fixed, together with an elliptic curve E
over Q, which should be thought of as varying. By definition, ρ is a continuous
homomorphism Gal(Q/Q)→ GL(V ), where V is a finite-dimensional vector space
over C, but we can always choose a finite Galois extension K of Q such that ρ is
trivial on Gal(Q/K), and then ρ becomes a complex representation of the finite
group Gal(K/Q). Since E is defined over Q, it is meaningful to talk about E(K),
the Mordell-Weil group of E over K. The natural action of Gal(K/Q) on E(K)
affords a representation of Gal(K/Q) on the finite dimensional complex vector space
C ⊗ E(K), where the tensor product is taken over Z, and the multiplicity of the
irreducible representation ρ in C⊗ E(K) will be denoted 〈ρ,E〉.

Let 1Q be the trivial one-dimensional representation of Gal(Q/Q). Then 〈1Q, E〉
is the rank of E(Q). Current thinking about the rank seems to favor the conjecture
that with probability 1,

(1) rank of E(Q) 6 1

as E varies over all elliptic curves over Q ordered in some reasonable way (see for
example [1], [2], [3], [4], [8], and [17]). Since (1) can be written 〈1Q, E〉 6 1, it is
tempting to speculate that for any fixed irreducible ρ and varying E,

(2) 〈ρ,E〉 6 1

with probability 1. Nothing in this note is intended to cast doubt on (2). But there
is a companion to (1) which predicts that the average rank of an elliptic curve
over Q is 1/2, and if we replace “average rank” by “average multiplicity” then the
resulting conjecture is flatly inconsistent with (2) for certain ρ.

The first example of this inconsistency arises when K is a Galois extension of Q
with Gal(K/Q) ∼= Q, the quaternion group of order 8. Then Gal(K/Q) has a unique
(up to isomorphism) irreducible two-dimensional representation ρ, and elementary
constructions show that there is an elliptic curve E over Q such that 〈ρ,E〉 > 1 ([9],
p. 129, Prop. 3) or even 〈ρ,E〉 > 2 (see [12]). In fact a recent theorem of Suresh
[16] implies that there are infinitely many such E with distinct j-invariants. But
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the key point is that 〈ρ,E〉 is even for any E, because the natural representation
of Gal(K/Q) on C ⊗ E(K) is defined over Q, whereas ρ is symplectic. Does the
fact that 〈ρ,E〉 is even for all E and positive for infinitely many E contradict (2)?
No, because we would simply infer from (2) that the set of isomorphism classes of
elliptic curves E such that 〈ρ,E〉 > 0 has density 0 in the set of all isomorphism
classes. But this inference implies that the average multiplicity of ρ in E for varying
E is 0, not 1/2.

The more general point here is that if ρ is any irreducible Artin representation of
Q and m(ρ) its Schur index then m(ρ) divides 〈ρ,E〉 for every E. If ρ is symplectic
as in the previous paragraph then m(ρ) = 2 and thus 〈ρ,E〉 is even, but long ago
Brauer proved that for every positive integer m there exists a group G and an
irreducible representation ρ of G such that m(ρ) = m ([5], pp. 742-745). Given m,
it is easy to construct a Galois extension K of Q such that Gal(K/Q) is isomorphic
to Brauer’s G (cf. [13]), but for large m I have no idea how to show that ρ, now
viewed as a representation of Gal(K/Q), occurs in C⊗E(K) for some E and thus
occurs with multiplicity > m. The main point though is that even if such elliptic
curves E exist, they would presumably be of density 0 among all elliptic curves and
so their existence would be compatible with (2).

More problematic are examples where m(ρ) = 1 but 〈ρ,E〉 is nonetheless even for
all elliptic curves E over Q. Such examples are at present conjectural, because they
depend on the following variant of the Birch-Swinnerton-Dyer conjecture, which we
shall refer to as “BSD with twist”:

(3) ords=1L(s, E, ρ) = 〈ρ,E〉.

Here L(s, E, ρ) is the L-function with local factors σ′
E/Qp

⊗ ρp (notation as in [10]

or [11]; in particular, σ′
E/Qp

is the representation of the Weil-Deligne group asso-

ciated to E/Qp). Although we have referred to (3) as a “variant” of the usual
BSD conjecture, it is actually a consequence of the usual version together with the
Deligne-Gross conjecture ([6], p. 323, Conjecture 2.7 (iii)). In the present setting,
the latter predicts that

(4) ords=1L(s, E, ρ) = ords=1L(s, E, ργ)

for all automorphisms γ of the cyclotomic subfield of C generated by the traces
of ρ, where ργ denotes the representation of Gal(Q/Q) such that tr (ργ) = (tr ρ)γ .
For a deduction of (3) from the usual BSD and (4) see [9], p. 127, Prop. 2. The
conjectural functional equation of L(s, E, ρ) relates L(s, E, ρ) to L(s, E, ρ∨), where
ρ∨ the dual of ρ, so if ρ is self-dual then the root number W (E, ρ) in the functional
equation determines the parity of the order of vanishing at s = 1:

W (E, ρ) = (−1)ords=1L(s,E,ρ).

It follows under (3) that

(5) W (E, ρ) = (−1)〈ρ,E〉.

Henceforth we assume that ρ is self-dual, so that (5) is conjecturally valid.
Let us now return to the “problematic” phenomenon mentioned at the beginning

of the previous paragraph. In view of (5) we may reformulate it as follows: There
are irreducible self-dual Artin representations ρ of Q such that W (E, ρ) = 1 for all
E over Q even though m(ρ) = 1. Such ρ are necessarily of even dimension and
trivial determinant ([11], p. 338, Prop. 11), but examples do exist (cf. [11], p. 313,
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Prop. D). The problem is that the examples in [11] are just too big – dim ρ = 16
and [K : Q] > 80, 080 – to be nonvacuous in the strong sense that 〈ρ,E〉 is provably
positive for at least one E.

The paper [14] is an attempt to remedy this defect. Let L and L′ be Galois
extensions of Q with relatively prime discriminants and Galois groups isomorphic
to Q, so that the compositum K = LL′ has Galois group Q×Q. Up to isomorphism
there is a unique irreducible representation ρ of Gal(K/Q) of dimension 4, and ρ is
self-dual with m(ρ) = 1. In fact ρ factors through a quotient of Gal(K/Q) of order
32, and it follows from the work of Suresh [16] that there are infinitely many elliptic
curves E over Q with distinct j-invariants such that 〈ρ,E〉 > 0. Presumably such
E are of density 0, because in [14] we prove:

Theorem 1. W (E, ρ) = 1 for all elliptic curves E over Q.

It is also shown in [14] that if the coprimality of the discriminants of L and L′

is replaced by the weaker assumption that L ∩ L′ = Q then it can happen that
W (E, ρ) = −1.

2. Addendum: Minimality

To recapitulate, given an irreducible self-dual Artin representation ρ of Q, let us
say that ρ has Property P ifW (E, ρ) = 1 for all elliptic curves E over Q. A necessary
condition for ρ to have Property P is that dim ρ be even and det ρ be trivial, and
the property itself is problematic – in the sense that it lacks an explanation – only
if m(ρ) = 1. (By the Brauer-Speiser theorem, 1 and 2 are the only possible values
of m(ρ) for a self-dual ρ.) In Theorem 1, ρ has dimension 4 and factors through a
Galois group of order 32. The following group-theoretic statement shows that the
theorem is minimal among problematic instances of Property P:

Theorem 2. Let G be a finite group and ρ an irreducible self-dual representation
of G of even dimension, trivial determinant, and Schur index 1. Then dim ρ > 4
and |G| > 32.

Proof. In dimension 2 the symplectic and special linear groups coincide, because
the bilinear form 〈∗, ∗〉 given by 〈(a, b), (c, d)〉 = ad − bc is alternating and nonde-
generate. Hence if dim ρ = 2 then our hypothesis that det ρ is trivial implies that
ρ is symplectic, whence m(ρ) = 2. Therefore dim ρ > 4.

To show that |G| > 32, we will make frequent use of the fact that

(6) |G| =
∑
β

(dim β)2,

where β runs over a set of representatives for the distinct isomorphism classes of
irreducible representations of G. In particular, if dim ρ > 6 then |G| > 36 > 32. So
we may assume that dim ρ = 4, and we must show that |G| > 32.

Suppose on the contrary that |G| < 32. Since dim ρ = 4 we have |G| > 16, and
in fact |G| > 17 (taking account of the one-dimensional trivial representation). So
17 6 |G| < 32. But since dim ρ divides |G| we find that |G| is either 20 or 24 or 28.

First consider the possibility that |G| = 28. A Sylow 7-subgroup of G is normal
and therefore unique; denote it N , and let P be a Sylow 2-subgroup. For any finite
group X let Aut(X) denote the automorphism group of X. The action of P on N
by conjugation determines a homomorphism

ϕ : P → Aut(N) ∼= Z/6Z,
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and the kernel of ϕ contains a subgroup M of order 2 centralizing N . Then MN is
an abelian normal subgroup of index 2 in G, whence every irreducible representation
of G has dimension dividing 2 ([15], p. 61, Corollary). This is a contradiction,
because dim ρ = 4.

Next consider the case |G| = 20. A Sylow 5-subgroup is normal, and we denote
it N ; we also choose a Sylow 2-subgroup P . As before, the action of P on N by
conjugation gives a homomorphism

ϕ : P → Aut(N) ∼= Z/4Z.

If there is an element x of order 2 in the kernel of ϕ then the subgroup generated by
N and x is abelian and normal of index 2 in G, so we get a contradiction as before.
Otherwise ϕ is an isomorphism, and ρ is induced by a nontrivial character χ of N .
According to the formula for the determinant of a monomial representation [7],

det ρ = signG/N · (χ ◦ tranG,N ),

where signG/N is the determinant of the permutation representation of G on the

cosets of N in G and tranG,N is the transfer from the abelianization Gab of G
to Nab = N . Since |Gab| = |P | = 4 and |N | = 5 the transfer is trivial, and
det ρ = signG/N . Now the elements of P form a set of coset representatives for

N in G, and thus the permutation representation of P on G/N is the regular
representation. Since P is cyclic of even order, the determinant of its regular repre-
sentation is nontrivial, whence signG/N is nontrivial also. Hence det ρ is nontrivial,
contradicting our hypotheses.

There remains the case |G| = 24. In view of (6), there are two possibilities for
the irreducible representations of G (counted up to isomorphism) in addition to
ρ: Either there are 8 one-dimensional characters or there are 4 one-dimensional
characters and in addition a two-dimensional representation.

Consider the first of these alternatives, that there are 8 one-dimensional charac-
ters. The commutator subgroup of G is then the Sylow 3-subgroup N of G. Let P
be a Sylow 2-subgroup; as before we have a map

(7) ϕ : P → Aut(N) ∼= Z/2Z.

The kernel of ϕ contains a subgroup M of order 4 centralizing N , and MN is an
abelian normal subgroup of index 2 in G. Thus we have a contradiction as before.

Finally, suppose that there are just 4 one-dimensional characters of G, so that
the commutator subgroup H of G is a normal subgroup of order 6. Then either
H ∼= Z/6Z or H is the symmetric group on 3 letters, but in either case, the subgroup
N of order 3 in H is unique. Since H is normal in G so is N ; in other words, the
Sylow 3-subgroup N of G is normal. As before, let P be a Sylow 2-subgroup, and
let ϕ be as in (7). The argument is now completed as in the previous paragraph. �

Remark. Since an irreducible self-dual representation is either orthogonal or sym-
plectic, we can replace self-dual in the statement of the theorem by orthogonal if
we like. But we would still need to retain the condition that m(ρ) = 1, because it
is entirely possible for an irreducible orthogonal representation to have Schur index
2, even though the local Schur index at infinity would be 1.
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3. Addendum: Coprimality of conductors

The proposal that (2) should hold with probability 1 for any elliptic curve E
over Q strikes me as the most straightforward generalization of the corresponding
conjecture about ranks. However one could argue that the correct generalization
is more restrictive: With probability 1, the inequality (2) holds as E varies over
elliptic curves with conductor prime to the conductor of ρ. Of course if ρ = 1Q then
the coprimality condition holds for all E. In this connection we recall that if ρ is
self-dual and the conductors of E and ρ are relatively prime then there is a simple
formula for W (E, ρ) (cf. [11], p. 337, Proposition 10):

(8) W (E, ρ) = χρ(−NE)W (E)dim ρ,

where NE is the conductor of E and χρ is the determinant of ρ, viewed as a primitive
Dirichlet character via class field theory. Also W (E) = W (E, 1Q). Note that χρ is
either quadratic or trivial since ρ is self-dual. The table below distinguishes between
four cases of (8).

dim ρ det ρ W (E, ρ)

even trivial 1
odd trivial W (E)
even nontrivial χρ(−NE)
odd nontrivial χρ(−NE)W (E)

Of particular note is the second row of the table, where ρ has odd dimension
but trivial determinant. Now if we return to (1) for a moment, we may paraphrase
the associated conjecture by saying that with probability 1, the rank of E(Q) is
determined by W (E). And for a fixed self-dual ρ, a similar paraphrase applies to
(2) with rank and W (E) replaced by 〈ρ,E〉 and W (E, ρ). But if these statements
are true, then for a fixed ρ of odd dimension and trivial determinant we have

〈ρ,E〉 = rank of E(Q)

with probability 1 as E varies over elliptic curves over Q of conductor prime to the
conductor of ρ.
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