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Abstract

Let F be a totally real field and χ an abelian totally odd character of F . In

1988, Gross stated a p-adic analogue of Stark’s conjecture that relates the value of the

derivative of the p-adic L-function associated to χ and the p-adic logarithm of a p-unit

in the extension of F cut out by χ. In this paper we prove Gross’s conjecture when F is

a real quadratic field and χ is a narrow ring class character. The main result also applies

to general totally real fields for which Leopoldt’s conjecture holds, assuming that either

there are at least two primes above p in F , or that a certain condition relating the L -

invariants of χ and χ−1 holds. This condition on L -invariants is always satisfied when

χ is quadratic.
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Introduction

Let F be a totally real field of degree n, and let

χ : GF := Gal(F̄ /F ) → Q
×

be a character of conductor n. Such a character cuts out a finite cyclic extension H of F ,
and can be viewed as a function on the ideals of F in the usual way, by setting χ(a) = 0 if a

is not prime to n. Let Na = NormF/Q(a) denote the norm of a. Fix a rational prime p and
a choice of embeddings Q ⊂ Qp ⊂ C that will remain in effect throughout this article. The

character χ may be viewed as having values in Qp or C via these embeddings.
Let S be any finite set of places of F containing all the archimedean places. Associated

to χ is the complex L-function

LS(χ, s) :=
∑

(a,S)=1

χ(a) Na−s =
∏

p/∈S

(1 − χ(p) Np−s)−1, (1)

which converges for Re(s) > 1 and has a holomorphic continuation to all of C when χ 6= 1.
By work of Siegel [13], the value LS(χ, n) is algebraic for each n ≤ 0. (See for instance the
discussion in §2 of [8], where LS(χ, n) is denoted aS(χ, n).)

Let E be a finite extension of Qp containing the values of the character χ. Let

ω : Gal(F (µ2p)/F ) → (Z/2p)× → Z×p

denote the p-adic Teichmuller character. If S contains all the primes above p, Deligne and
Ribet [3] have proved the existence of a continuous E-valued function LS,p(χω, s) of a variable
s ∈ Zp characterized by the interpolation property

LS,p(χω, n) = LS(χω
n, n) for all integers n ≤ 0. (2)

The function LS,p(χω, s) is meromorphic on Zp, regular outside s = 1, and regular everywhere
when χω is non-trivial.

If p ∈ S is any non-archimedean prime, and R := S − {p}, then

LS(χ, 0) = (1 − χ(p))LR(χ, 0).

In particular, LS(χ, s) vanishes at s = 0 when χ(p) = 1, and equation (2) implies that the
same is true of the p-adic L-function LS,p(χω, 0). Assume for the remainder of this article
that the hypothesis χ(p) = 1 is satisfied.

For x ∈ Z×p , let 〈x〉 = x/ω(x) ∈ 1 + pZp. If p does not divide p, the formula

LS,p(χω, s) = (1 − 〈Np〉−s)LR,p(χω, s)
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implies that
L′S,p(χω, 0) = logp(Np)LR(χ, 0), (3)

where logp : Q×p → Qp denotes the usual Iwasawa p-adic logarithm.
If p divides p, which we assume for the remainder of this article, a formula analogous to

(3) comparing L′S,p(χω, 0) and LR(χ, 0) has been conjectured in [8]. This formula involves
the group O×H,S of S-integers of H—more precisely, the χ−1-component Uχ of the E-vector

space O×H,S ⊗ E:

Uχ := (O×H,S ⊗ E)χ
−1

:=
{

u ∈ O×H,S ⊗ E such that σu = χ−1(σ)u
}

. (4)

Dirichlet’s unit theorem implies that Uχ is a finite-dimensional E-vector space and that

dimE Uχ = #{v ∈ S such that χ(v) = 1}
= ords=0 LS(χ, s)

= ords=0 LR(χ, s) + 1.

In particular, the space Uχ is one-dimensional if and only if LR(χ, 0) 6= 0. Assume that this
is the case, and let uχ be any non-zero vector in Uχ.

The choice of a prime P of H lying above p determines two Z-module homomorphisms

ordP : O×H,S → Z, LP : O×H,S → Zp, (5)

where the latter is defined by

LP(u) := logp(NormHP/Qp
(u)). (6)

Let ordP and LP also denote the homomorphisms from Uχ to E obtained by extending
scalars to E. Following Greenberg (cf. equation (4’) of [6] in the case F = Q), the L -
invariant attached to χ is defined to be the ratio

L (χ) := − LP(uχ)

ordP(uχ)
∈ E. (7)

This L -invariant is independent of the choice of non-zero vector uχ ∈ Uχ, and it is also
independent of the choice of the prime P lying above p. When LR(χ, 0) = 0, we (arbitrarily)
assign the value of 1 to L (χ).

The following is conjectured in [8] (cf. Proposition 3.8 and Conjecture 3.13 of loc. cit.):

Conjecture 1 (Gross). For all characters χ of F and all S = R ∪ {p}, we have

L′S,p(χω, 0) = L (χ)LR(χ, 0). (8)

When LR(χ, 0) = 0, Conjecture 1 amounts to the statement L′S,p(χω, 0) = 0. As explained
in Section 1, this case of the conjecture follows from Wiles’ proof of the Main Conjecture
for totally real fields (assuming that χ is of “type S”; see Lemma 1.2). We will therefore
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assume that LR(χ, 0) 6= 0. In this setting, Gross’s conjecture suggests defining the analytic
L -invariant of χ by the formula

Lan(χ) :=
L′S,p(χω, 0)

LR(χ, 0)
=

d

dk
Lan(χ, k)k=1, (9)

where

Lan(χ, k) :=
−LS,p(χω, 1 − k)

LR(χ, 0)
. (10)

Conjecture 1 can then be rephrased as the equality L (χ) = Lan(χ) between algebraic and
analytic L -invariants. The main result of this paper is:

Theorem 2. Assume that Leopoldt’s conjecture holds for F .

1. If there are at least two primes of F lying above p, then Conjecture 1 holds for all χ.

2. If p is the only prime of F lying above p, assume further that

ordk=1(Lan(χ, k) + Lan(χ
−1, k)) = ordk=1 Lan(χ

−1, k). (11)

Then Conjecture 1 holds for both χ and χ−1.

Remark 3. The somewhat mysterious condition formulated in (11) makes no a priori as-
sumption on the order of vanishing of LS,p(χω, s) at s = 0. It is automatically satisfied (after
possibly interchanging χ and χ−1) when Lan(χ, k) and Lan(χ

−1, k) have different orders of
vanishing. When these orders of vanishing agree, it stipulates that the sum of the leading
terms at k = 1 of Lan(χ, k) and Lan(χ

−1, k) should be nonzero. In the setting that we are
considering, where LR(χ, 0) 6= 0, it is expected that the functions Lan(χ, k) and Lan(χ

−1, k)
both vanish to order 1 at k = 1. If this is true, condition (11) amounts to the condition

Lan(χ) + Lan(χ
−1) 6= 0. (12)

One can show using the methods of section 4 that when p is the unique prime of F lying
above p and Leopoldt’s conjecture holds for F , we have

L (χ) 6= 0 and L (χ−1) 6= 0 =⇒ L (χ) + L (χ−1) 6= 0.

Therefore, condition (12) is always expected to hold. The condition on the non-vanishing
of the algebraic L -invariant attached to χ may however be quite deep, and condition (11)
appears to be a substantial hypothesis in the formulation of Theorem 2.

Remark 3 notwithstanding, Theorem 2 leads to the following two unconditional results.

Corollary 4. Let F be a real quadratic field, and let χ be a narrow ring class character of
F . Then Conjecture 1 holds for χ.
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Proof. Corollary 4 is unconditional because Leopoldt’s conjecture is trivial for real quadratic
F . Furthermore, since χ is a ring class character, the representations induced from F to Q
by χ and χ−1 are equal and therefore the L-functions (both classical and p-adic) attached
to these characters agree. It follows that the leading terms of Lan(χ, k) and Lan(χ

−1, k) are
equal, and therefore condition (11) is satisfied. Corollary 4 follows.

Corollary 5. Let F be a totally real field satisfying Leopoldt’s conjecture, and let χ be a
narrow ray class character of F . Then Conjecture 1 holds for χ in either of the following
two cases:

1. There are at least two primes of F above the rational prime p, or

2. The character χ is quadratic.

Proof. The first case is direct consequence of Theorem 2, and the second follows from the
fact that Lan(χ, k) = Lan(χ

−1, k) when χ is quadratic.

Remark 6. When Fp = Qp, Conjecture 1 leads to a p-adic analytic construction of non-
trivial p-units in abelian extensions of F by exponentiating the first derivatives of the appro-
priate partial p-adic L-series. In this way, Conjecture 1 supplies a p-adic solution to Hilbert’s
twelfth problem for certain abelian extensions of F , just like Stark’s original archimedean
conjectures. See [8, Proposition 3.14] for a more detailed discussion of the application of
Conjecture 1 to the analytic construction of class fields.

Remark 7. Conjecture 1 has been proved in [8, §4] in the case F = Q using an explicit
expression for the Gross-Stark unit uχ in terms of Gauss sums, which are related to values
of the p-adic Gamma function by the Gross-Koblitz formula. The p-adic Gamma function
is in turn related to the p-adic L-functions over Q by the work of Ferrero and Greenberg
[4]. In contrast, the approach we have followed to handle more general totally real F does
not construct the Gross-Stark unit uχ directly. Instead, it exploits the two-dimensional p-
adic representations attached to certain families of Hilbert modular forms to construct an
annihilator for uχ under the local Tate pairing. The explicit construction of these families
allows us to relate these annihilators, and hence uχ itself, to p-adic L-functions and to Lan(χ).

We now present a more detailed outline of the strategy used to prove Theorem 2, and
give an overview of the contents of this article.

Cohomological interpretation of Conjecture 1

Let
εcyc : GF → Z×p (13)

denote the cyclotomic character defined by

σ(ζ) =: ζεcyc(σ) (14)

for any p-power root of unity ζ ∈ F . Write E(χ)(1) for the one-dimensional E-vector space
equipped with the continuous action of GF via χεcyc, and let E(χ−1) denote its Kummer
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dual, on which GF acts via χ−1. The first step is to exploit Tate’s local duality and the
reciprocity law of global class field theory to give an alternate description of L (χ), following
Greenberg [6]. This alternate description involves the subgroup H1

p (F,E(χ−1)) of the global
cohomology group H1(F,E(χ−1)) consisting of (continuous) classes whose restrictions to the
inertia subgroups Iq ⊂ GF are unramified for all primes q 6= p of F . Under the assumptions
LR(χ, 0) 6= 0 and χ(p) = 1, we show that

dimEH
1
p (F,E(χ−1)) = [Fp : Qp], dimEH

1(Fp, E(χ−1)) = [Fp : Qp] + 1,

and that the natural restriction map

H1
p (F,E(χ−1))−→H1(Fp, E(χ−1)) (15)

is injective.
Since χ(p) = 1, the group H1(Fp, E(χ−1)) = H1(Fp, E) = Homcts(GFp

, E) contains two
distinguished elements: the unique unramified homomorphism

κnr ∈ Hom(Gal(F nr
p /Fp),OE)

sending the Frobenius element Frobp to 1, and the restriction to GFp
of the p-adic logarithm

of the cyclotomic character:

κcyc := logp(εcyc) ∈ Hom(GF , E) = H1(F,E). (16)

Let H1(Fp, E)cyc denote the two-dimensional subspace of H1(Fp, E) spanned by κnr and
κcyc, and let H1

p (F,E(χ−1))cyc denote its inverse image inH1
p (F,E(χ−1)) under the restriction

map at p. It is proved in Section 1 that

dimEH
1
p (F,E(χ−1))cyc = 1.

If κ ∈ H1
p (F,E(χ−1))cyc ⊂ H1(Fp, E)cyc is any non-zero class, we may thus write

resp(κ) =: x · κnr + y · κcyc, with x, y ∈ E.

The ratio x/y—the “slope” of the global line relative to the natural basis (κnr, κcyc)—does
not depend on the choice of κ. The main result of Section 1 is that y 6= 0 and that

L (χ) = −x/y.

Thanks to this result, the problem of proving Theorem 2 is transformed into the problem of
constructing a global cohomology class κ ∈ H1

p (F,E(χ−1))cyc whose “coordinates” x and y
can be computed explicitly and related to p-adic L-functions at 0—more precisely, such that

resp(κ) = −Lan(χ) · κnr + κcyc. (17)
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Construction of a cusp form

The construction of κ borrows heavily from the techniques initiated in [11] and extended and
developed in [17] to prove the main conjecture of Iwasawa theory for totally real fields. We
briefly outline the main steps in the notationally simpler case where F = Q and the prime
p is odd. Let m ≥ 1 denote the conductor of the odd Dirichlet character χ. Let R be the
set of primes dividing m∞, and let S = R ∪ {p}.

For an integer k ≥ 1, denote by Mk(m,χ) = Mk(Γ1(m), χ) the space of classical modular
forms of weight k, level m and character χ with Fourier coefficients in E. Let (η, ψ) be a pair
of (not necessarily primitive) Dirichlet characters of modulus mη and mψ, respectively, such
that ηψ(−1) = (−1)k. A key role is played in the argument by the weight k Eisenstein series
Ek(η, ψ). After recalling the definitions of Hilbert modular forms and their q-expansions in
Section 2.1, the Eisenstein series for the Hilbert modular group are defined in Section 2.2. A
key result in that section is the calculation of their constant terms at certain cusps. When
F = Q, the Eisenstein series Ek(η, ψ) ∈ Mk(mηmψ, ηψ) for k ≥ 1 and (k, η, ψ) 6= (2, 1, 1)
are given by:

Ek(η, ψ) := Ck(η, ψ) +
∞

∑

n=1

(
∑

d|n

η
(n

d

)

ψ(d)dk−1)qn, (18)

where

Ck(η, ψ) :=
1

2







L(ψ, 1 − k) if η = 1;
L(η, 1 − k) if ψ = 1;
0 otherwise.

In particular, the Eisenstein series

E1(1, χ) :=
1

2
LR(χ, 0) +

∞
∑

n=1

(
∑

d|n

χ(d))qn

Ek−1(1, ω
1−k) :=

1

2
L(ω1−k, 2 − k) +

∞
∑

n=1

(
∑

d|n

ω1−k(d)dk−2)qn (19)

=
1

2
ζp(2 − k) +

∞
∑

n=1

(
∑

d|n

ω−1(d)〈d〉k−2)qn

belong to the spaces M1(m,χ) and Mk−1(p, ω
1−k) respectively. Here, ζp(s) = Lp(1, s) denotes

the p-adic zeta-function of Kubota-Leopoldt. In (19), the character ω1−k is always viewed
as having modulus p, even when k ≡ 1 (mod p− 1). Let

Gk−1(1, ω
1−k) := 2ζp(2 − k)−1Ek−1(1, ω

1−k) (20)

= 1 + 2ζp(2 − k)−1

∞
∑

n=1

(
∑

d|n

ω−1(d)〈d〉k−2)qn (21)

be the associated normalized Eisenstein series of weight k − 1.
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In Section 2.3, we consider the product

Pk := E1(1, χ)Gk−1(1, ω
1−k) ∈Mk(mp, χω

1−k). (22)

As explained in Section 2.3 in the setting of Hilbert modular forms, it follows from general
principles that the series Pk can be expressed uniquely as the sum of a cusp form and a linear
combination of the Eisenstein series (18) in Mk(mp, χω

1−k):

Pk =

(

Cusp
form

)

+
∑

(η,ψ)∈J

ak(η, ψ)Ek(η, ψ), (23)

where (η, ψ) ranges over a set J of pairs of (not necessarily primitive) Dirichlet characters
of modulus mη and mψ, respectively, satisfying

mηmψ = mp, ηψ = χω1−k. (24)

The main result of Section 2.3 is the computation of certain coefficients in (23) for k > 2:

ak(1, χω
1−k) = −Lan(χ, k)

−1, ak(χ, ω
1−k) = −Lan(χ

−1, k)−1〈m〉k−1, (25)

where Lan(χ, k) is the quantity defined in (10). The derivation of (25) proceeds by comparing
the constant terms of both sides of (23) at various cusps.

In Section 2.4, we consider Hida’s idempotent

e : Mk(mp, χω
1−k)−→Mk(mp, χω

1−k),

which is defined as
e := limUn!

p

on the submodule of modular forms with Fourier coefficients in OE, and extended to the
space Mk(mp, χω

1−k) by E-linearity. The image of e,

Mo
k (mp, χω

1−k) := eMk(mp, χω
1−k),

has dimension that is bounded independently of k, and is called the ordinary subspace. The
operator e preserves the space of cusp forms. For all (η, ψ) satisfying (24), and k > 1, it can
be checked that

eEk(η, ψ) =

{

Ek(η, ψ) if p - mη;
0 if p | mη.

Hence the modular form P o
k := ePk can be written

P o
k =

(

A cusp
form

)

+
∑

(η,ψ)∈Jo

ak(η, ψ)Ek(η, ψ), (26)

where the sum on the right is taken over the set J o of pairs (η, ψ) ∈ J for which p - mη.
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Let uk, vk and wk be scalars defined for integer k > 2 by

uk :=
Lan(χ, k)

−1

ck
, vk :=

Lan(χ
−1, k)−1〈m〉k−1

ck
, wk :=

1

ck
, (27)

where
ck := Lan(χ, k)

−1 + Lan(χ
−1, k)−1〈m〉k−1 + 1.

The vector (uk, vk, wk) is proportional to (ak(1, χω
1−k), ak(χ, ω

1−k),−1). From (26), it follows
that the modular form

Hk := ukEk(1, χω
1−k) + vkEk(χ, ω

1−k) + wkP
o
k (28)

can be written as a linear combination

Hk =

(

A cusp
form

)

+
∑

(η,ψ)∈Jo

η 6=1,χ

wkak(η, ψ)Ek(η, ψ). (29)

In Section 2.5, we introduce a Hecke operator t that satisfies

tE1(1, χω
0) = E1(1, χω

0) (30)

and annihilates all the Eisenstein series contributions in (29), so that

Fk := tHk

is a cusp form. Equation (30) explains the necessity of calculating the coefficients in (25)
instead of applying a Hecke operator t directly to P o

k—any Hecke operator that annihilates
Ek(1, χω

1−k) or Ek(χ, ω
1−k) necessarily annihilates their common weight 1 specialization

E1(1, χω
0) = E1(χ, ω

0).

p-adic interpolation of modular forms

In Section 3 we describe the p-adic interpolation (in the variable k) of the Eisenstein series
Ek(η, ψ) as well as of the forms Pk, P

o
k , Hk and Fk. For this purpose, the Iwasawa algebra Λ

is defined in Section 3.1. In our application, it is most useful to view Λ as a complete subring
of the ring C(Zp, E) of continuous E-valued functions on Zp equipped with the topology of
uniform convergence inherited from the sup norm. The ring Λ is the completion of the OE-
subalgebra of C(Zp, E) generated by the functions k 7→ ak as a ranges over 1+pZp. For each
k ∈ Zp, write νk : Λ−→E for the evaluation homomorphism νk(h) := h(k). The algebra Λ is
known to be isomorphic to the power series ring OE[[T ]], and in particular, by the Weierstrass
preparation theorem, any element of Λ has finitely many zeroes. If h belongs to the fraction
field FΛ of Λ, it follows that the evaluation νk(h) ∈ E is defined for all but finitely many
k ∈ Zp. A Λ-adic modular form of tame level m and character χ is, by definition, a formal
q-expansion G ∈ FΛ ⊗ Λ[[q]] satisfying

νk(G ) belongs to Mk(mp, χω
1−k) for almost all integers k > 1.
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(Here, νk(G ) ∈ E[[q]] is simply the power series obtained from G by applying νk to its
coefficients.) Such a G is said to be a Λ-adic cusp form if νk(G ) is a cusp form for all but
finitely many k > 1. The FΛ-vector spaces of Λ-adic modular forms and cusp forms are
denoted M(m,χ) and S(m,χ), respectively. The ordinary projection e acts on M(m,χ)
and S(m,χ) in a manner compatible with the projections νk. The images of e in M(m,χ)
and S(m,χ) are denoted Mo(m,χ) and So(m,χ), respectively. These definitions are all
recalled in the context of Hilbert modular forms in Section 3.1.

Basic examples of Λ-adic forms are given by the Λ-adic Eisenstein series E (η, ψ) satisfying

νk(E (η, ψ)) = Ek(η, ψω
1−k) for k ∈ Z≥2

=
1

2
δη=1LS,p(ψω, 1 − k) +

∞
∑

n=1

(
∑

d|n
p-d

η
(n

d

)

ψ(d)〈d〉k−1)qn.

(By convention, the character ψω1−k is viewed as having modulus divisible by p, even if p
does not divide its conductor; in particular ψω1−k(p) = 0 for all k.) The existence and basic
properties of the Λ-adic Eisenstein series, which are intimately related to those of the p-adic
L-functions attached to abelian characters of GF , are recalled in Section 3.2.

In Section 3.3 we define elements P ∈ M(m,χ), ordinary forms Po,H ∈ Mo(m,χ),
and a cusp form F ∈ So(m,χ) satisfying

νk(P) = Pk, νk(P
o) = P o

k , νk(H ) = Hk, νk(F ) = Fk

for almost all k ∈ Z>2. The proof consists essentially in observing that there are elements
u, v, and w ∈ FΛ such that, for almost all k > 2,

νk(u) = uk, νk(v) = vk, νk(w) = wk,

where uk, vk, and wk are the constants introduced in (27). In Section 3.3, we describe the
main properties of the Λ-adic cusp form F , most notably:

1. Let

Λ(1) :=

{

f

g
, with f, g ∈ Λ and g(1) 6= 0

}

denote the localization of Λ at ker ν1. Under the assumption (11) when p is the unique
prime above p, it can be seen that the elements u, v and w belong to Λ(1), and that u
even belongs to Λ×(1). In particular, the cusp form F belongs to Λ(1)⊗Λ Λ[[q]], and hence
its weight one specialization is defined. Furthermore, assuming Leopoldt’s conjecture
for F , we have

ν1(F ) = E1(1, χω
0).

2. Let
ν1+ε : Λ(1)−→E[ε]/ε2, ν1+ε(f) := f(1) + f ′(1)ε (31)

be the natural lift of ν1 to the ring Ẽ := E[ε]/ε2 of dual numbers over E. The expression
F1+ε := ν1+ε(F ) can be thought of as a “cusp form of weight 1+ε”. Let u1 := u(1) and
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v1 = v(1) be the values at k = 1 of the elements u, v. A direct calculation, explained
in Section 3.3, shows that for every prime q,

aq(F1+ε) =







(1 + v1κcyc(q)ε) + χ(q)(1 + u1κcyc(q)ε) if q - mp,
1 + v1κcyc(q)ε if q | m,
1 + u1Lan(χ)ε if q = p.

(32)

An examination of the Fourier coefficients of F1+ε reveals that it is an eigenform relative
to the natural action of the Hecke operators on Ẽ[[q]] inherited from the specialization
map ν1+ε : M(m,χ)−→Ẽ[[q]]. In descriptive terms, the Λ-adic cusp form F is an
“eigenform in a first order infinitesimal neighborhood of weight one.”

Let T denote the Λ-algebra generated by the Hecke operators acting on the finite-dimensional
FΛ-vector space So(m,χ). The eigenform F1+ε gives rise to surjective Λ(1)-algebra homo-
morphisms

φ1 : T ⊗ Λ(1)−→E, φ1+ε : T ⊗ Λ(1)−→Ẽ

sending t ∈ T ⊗ Λ(1) to the associated eigenvalues of t acting on F1 and F1+ε, respectively.
Write T(1) for the localization of T ⊗ Λ(1) at the maximal ideal m := ker φ1. The homo-
morphisms φ1 and φ1+ε factor through T(1), and we will often view them as defined on this
quotient of T ⊗ Λ(1). Likewise, we will write m for the maximal ideal of T(1).

Representations associated to Λ-adic forms

In Section 4 we exploit the homomorphism φ1+ε to construct the desired cocycle κ. Let F(1)

denote the total ring of fractions of T(1):

F(1) :=
{a

b
, a, b ∈ T(1), b is not a zero divisor

}

.

A key ingredient in the construction of κ is the two-dimensional Galois representation

ρ : GF−→GL2(F(1)); ρ(σ) =

(

a(σ) b(σ)
c(σ) d(σ)

)

attached to the space of ordinary Λ-adic cusp forms. The existence and basic properties of
this representation, which were established by Wiles in [16], are recalled in Section 4.1. It is
shown in Section 4.1 that ρ can be conjugated so that, for all σ ∈ GF ,

a(σ), d(σ) belong to T×(1).

Under the assumption that LR(χ, 0) 6= 0, it is further shown in Section 4.2 that there is a
multiple b̃ of the matrix entry b (by some element of F(1)) for which:

1. The function σ 7→ K(σ) := b̃(σ)/d(σ) takes values in the maximal ideal m ⊂ T(1).

11



2. Up to scaling by E×, the function κ given by the formula

φ1+ε(K(σ)) =: κ(σ)ε

has the required properties—namely, it is a 1-cocycle representing a class

[κ] ∈ H1
p (F,E(χ−1))cyc

that satisfies
resp([κ]) = −Lan(χ)κnr + κcyc.

1 Duality and the L -invariant

We begin by recalling some notations and conventions regarding characters of F . Fix an
ordering of the n real places of F , and let sgni : R× → {±1} denote the associated sign
function. For a vector r ∈ (Z/2Z)n write sgn(a)r =

∏n
i=1 sgni(a)

ri.
Let b be an integral ideal of F . Let Ib denote the group of fractional ideals of F that are

relatively prime to b. A narrow ray class character modulo b is a homomorphism

ψ : Ib → Q
×

that is trivial on any principal ideal (α) generated by a totally positive element α ≡ 1
(mod b). The function ψ may be extended to a function on the set of all integral ideals of
F by defining ψ(m) = 0 if m is not relatively prime to b. The character ψ may be viewed as
a character modulo ba for any integral ideal a. If there exists a narrow ray class character
ψ0 modulo c for some proper divisor c of b, with ψ0(m) = ψ(m) for all m relatively prime
to b, then ψ is called an imprimitive character. The minimal such divisor of b is called the
conductor of ψ, and ψ0 is called the associated primitive character.

Given a narrow ray class character ψ modulo b, there exists an r ∈ (Z/2Z)n such that

ψ((α)) = sgn(α)r for α ≡ 1 (mod b).

The vector r is called the sign of ψ. The character ψ is said to be totally even if r =
(0, 0, . . . , 0) and totally odd if r = (1, 1, . . . , 1).

We place ourselves in the situation of the introduction regarding the character χ and the
finite sets R and S of places of the totally real field F . More precisely, we assume that χ is
a primitive character of conductor n and that S consists exactly of the set of places dividing
np∞, while R = S − {p}. Recall that E is a finite extension of Qp containing the values of
the character χ.

Lemma 1.1. The following are equivalent:

1. The special value LR(χ, 0) is non-zero.

2. For all places v ∈ R, we have χ(v) 6= 1. (In particular, the character χ is totally odd.)

12



3. The vector space Uχ is one-dimensional over E.

Proof. Since χ is non-trivial, the L-series LR(χ−1, s) (viewing χ as a complex character)
is holomorphic and non-vanishing at s = 1. A consideration of the local factors in the
functional equation relating LR(χ−1, s) and LR(χ, 1 − s) shows that

ords=0 LR(χ, s) = #{v ∈ R such that χ(v) = 1}. (33)

This implies the equivalence of (1) and (2). (See, for example, Prop. 3.4 in Ch. I of [14].)
Dirichlet’s S-unit theorem implies the equivalence of (2) and (3). (See also Ch. I.4 of [14].)

Recall that the character χ is said to be of “type S” in the terminology of Greenberg
(cf. the first paragraph in [17]) if H ∩ F∞ = F , where F∞ is the cyclotomic Zp-extension of
F . This condition is satisfied, for example, if χ has order prime to p. The following lemma
(whose proof is deep, relying on the full force of the main conjecture for totally real fields)
essentially disposes of Conjecture 1 in the case where LR(χ, 0) = 0.

Lemma 1.2. Suppose that H ∩ F∞ = F . If LR(χ, 0) = 0, then L′S,p(χ, 0) = 0, and therefore
Conjecture 1 holds for χ and R.

Proof. Theorem 1.2 of [17] implies that

ords=0 LS,p(χω, s) = ords=0 fχ, (34)

where fχ corresponds to the characteristic power series of the Λ = Zp[[Gal(H∞/H)]]-module
Xχ ⊂ Gal(L∞/H∞) defined on p. 409 of [15]. (Here H∞ denotes the cyclotomic Zp-extension
of H and L∞ is the maximal unramified abelian pro-p-extension of H∞.) It is known by an
explicit construction (cf. the statement at the top of p. 410 of [15], or [1], [5]) that

#{v ∈ S such that χ(v) = 1} ≤ ords=0 fχ. (35)

Since χ(p) = 1 and p ∈ S, equations (33) and (35) combine with (34) to give

ords=0 LS,p(χω, s) ≥ ords=0 LR(χ, s) + 1.

In particular, L′S,p(χω, 0) = 0 when LR(χ, 0) = 0.

Thanks to Lemma 1.2, we assume for the rest of this article χ satisfies the equivalent
assumptions of Lemma 1.1.

Let E(1)(χ) and E(χ−1) be the continuous one-dimensional representations of GF defined
in the introduction, following equation (14). We will now study certain Galois cohomology
groups (both local and global) associated to these p-adic representations.

If K is a field and M is a finite GK-module, we denote by H i(K,M) the Galois coho-
mology group of continuous i-cocycles on GK with values in M , modulo i-coboundaries. If
OE denotes the rings of integers of E and π is a uniformizing element of OE, then recall the
definitions:

H1(K,OE(χ−1)) := lim
←,n

H1(K,OE/π
n(χ−1)),

H1(K,E(χ−1)) := H1(K,OE(χ−1)) ⊗OE E.

13



1.1 Local cohomology groups

Let v be any place of F , and let Gv and Iv ⊂ Gv denote a choice of decomposition and
inertia group at v in GF . Given any finite GF -module M , the inflation-restriction sequence
attached to Iv yields the exact sequence

0−→H1(Gv/Iv,M
Iv)−→H1(Fv,M)

resIv−→ H1(Iv,M)Gv/Iv . (36)

A class in H1(F,M) is said to be unramified at v if its restriction to H1(Fv,M) lies in the
kernel of resIv .

Recall that local Tate duality gives rise to a perfect pairing

H1(Fv,Z/p
nZ) ×H1(Fv, µpn)−→H2(Fv, µpn) = Z/pnZ.

After tensoring this with OE/π
n, twisting by χ−1, and passing to the limit as n → ∞, one

obtains perfect OE-linear and E-linear pairings

〈 , 〉v : H1(Fv,OE/π
n(χ−1)) ×H1(Fv,OE/π

n(1)(χ))−→OE/π
n, (37)

〈 , 〉v : H1(Fv, E(χ−1)) ×H1(Fv, E(1)(χ))−→E. (38)

If χ(v) 6= 1, then H1(Gv/Iv,OE/π
n(χ−1)Iv) ∼= (OE/π

n(χ−1)Iv)/(χ−1(v) − 1) has cardi-
nality bounded independently of n, and there are no unramified classes in H1(Fv, E(χ−1)).
If χ(v) = 1, we have:

1. The group H1(Fv, E(χ−1)) = H1(Fv, E) = Homcts(Gv, E) contains a distinguished
unramified class: the unique homomorphism

κnr ∈ Hom(Gal(F nr
v /Fv),OE)

sending the Frobenius element Frobv at v to 1.

2. If v divides p, then the restriction to GFv of the p-adic logarithm of the cyclotomic
character

κcyc := logp(εcyc) ∈ Hom(GF , E) = H1(F,E)

gives a ramified element of H1(Fv, E). The elements κnr and κcyc will sometimes be
referred to as the unramified and cyclotomic cocycles respectively.

3. For each positive integer n, the connecting homomorphism of Kummer Theory yields
an isomorphism

δv,n : F×v ⊗ Z/pnZ−→H1(Fv,Z/p
nZ(1))

As n varies, the maps δv,n are compatible with the natural projections on both sides.
Passing to the limit with n, and then tensoring with E, we obtain an isomorphism

δv : F×v ⊗̂E−→H1(Fv, E(1)), (39)

where

F×v ⊗̂E :=

(

lim
←,n

F×v ⊗ Z/pnZ

)

⊗Zp E.

14



4. For each u ∈ F×v ⊗̂E, we have

〈κnr, δv(u)〉v = − ordv(u), 〈κcyc, δv(u)〉v = Lv(u), (40)

where ordv and Lv are the homomorphisms F×v ⊗̂E−→E defined as in (5) and (6) of
the introduction. The equations in (40) are direct consequences of the reciprocity law
of local class field theory. In particular, the subspace of H1(Fv, E(1)) that is orthogonal
to κnr under the local Tate pairing is equal to δv(O×Fv ⊗̂E).

Lemma 1.3. Let v be any place of F . The dimension of H1(Fv, E(1)(χ)) is given in the
following table:

χ(v) = 1 χ(v) 6= 1
v - p∞ 1 0
v | ∞ 0 0
v | p [Fv : Qp] + 1 [Fv : Qp].

The same is true for H1(Fv, E(χ−1)).

Proof. For v infinite, the lemma is clear. For v finite, Tate’s local Euler characteristic formula
(see the “Corank Lemma” of [7, Chapter 2]) and Tate local duality yield

dimEH
1(Fv, E(1)(χ))

= dimEH
0(Fv, E(1)(χ)) + dimEH

2(Fv, E(1)(χ)) +

{

0 v - p

[Fv : Qp] v | p

= dimEH
0(Fv, E(χ−1)) +

{

0 v - p

[Fv : Qp] v | p
,

which explains the remaining values in the table.

1.2 Global cohomology groups

We now define certain subgroups of the global cohomology groups H1(F,E(1)(χ)) and
H1(F,E(χ−1)) by imposing appropriate local conditions.

Recall that

H1
nr(Fv, E(χ−1)) ' H1(Gv/Iv, E(χ−1)Iv) =

{

E · κnr if χ(v) = 1;

0 otherwise.

denotes the subgroup of unramified cohomology classes. We denote by H1
nr(Fv, E(χ)(1)) the

orthogonal complement of H1
nr(Fv, E(χ−1)) under the local Tate pairing, so

H1
nr(Fv, E(χ)(1)) '

{

O×Fv ⊗̂E if χ(v) = 1;

H1(Fv, E(χ)(1)) otherwise.
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Let
H1

[p](F,E(χ−1)) ⊂ H1
p (F,E(χ−1))

denote the subgroups of H1(F,E(χ−1)) consisting of classes whose restriction to GFv belong
to H1

nr(Fv, E(χ−1)) for all v 6= p, and which are trivial/arbitrary, respectively, at the prime
p. Similarly, we denote by

H1
[p](F,E(1)(χ)) ⊂ H1

p (F,E(1)(χ))

the subgroups of classes in H1(F,E(1)(χ)) whose restrictions lie in H1
nr(Fv, E(χ)(1)) for all

v 6= p, and which are trivial/arbitrary, respectively, at the prime p.
Recall the group Uχ of Gross-Stark units that was defined in equation (4) of the intro-

duction.

Proposition 1.4. The natural map

δ : Uχ−→H1
p(F,E(1)(χ))

induced by the connecting homomorphism of Kummer theory is an isomorphism. In partic-
ular,

dimEH
1
p (F,E(1)(χ)) = 1.

Proof. If G = Gal(H/F ), then the restriction map

H1(F,E(1)(χ))
res−→ H1(H,E(1)(χ))G (41)

induces an isomorphism. Indeed, the kernel and the cokernel of this map are given by
H i(G,E(1)(χ)GH) for i = 1, 2 where GH = Gal(F̄ /H), and E(1)(χ)GH = 0. Thus

H1(F,E(1)(χ))
'−→ H1(H,E(1)(χ))G = H1(H,E(1))χ

−1 ' (H× ⊗̂E)χ
−1

, (42)

where the superscript of χ−1 affixed to an E[G]-module denotes the submodule on which G
acts via χ−1. The last isomorphism in (42) arises from (39) with Fv replaced by H.

Similarly, in the local situation, we have

H1(Fv, E(1)(χ)) ' (H×w ⊗̂E)χ
−1

. (43)

where w is some prime of H over v. The result now follows from the fact that the group
H1

nr(Fv, E(1)(χ)) corresponds to (O×Hw ⊗̂E)χ
−1

under this identification.

If W is any subspace of the local cohomology group H1(Fp, E(χ−1)) = Hom(Gp, E),
define

H1
p,W (F,E(χ−1)) ⊂ H1

p (F,E(χ−1))

to be the subspace consisting of classes whose image under resp belongs to W .
The following lemma can be viewed as the global counterpart of Lemma 1.3.
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Lemma 1.5. Let χ and p satisfy χ(p) = 1. Then

dimEH
1
p (F,E(χ−1)) = [Fp : Qp].

More generally, if W ⊂ H1(Fp, E) is any subspace containing the unramified cocycle κnr,
then

dimE H
1
p,W (F,E(χ−1)) = dimEW − 1.

Proof. The Poitou-Tate exact sequence in Galois cohomology, applied to the finite modules
OE/π

n(χ−1), gives rise to the exact sequence

0−→H1
[p](F,OE/π

n(χ−1))−→H1
p (F,OE/π

n(χ−1))−→H1(Fp,OE/π
n(χ−1))

−→H1
p (F,OE/π

n(1)(χ))∨,
(44)

where the last map arises from the local Tate pairing. Now we note that the module
H1

[p](F,OE/π
n(χ−1)) maps (with kernel bounded independently of n) to the group of homo-

morphisms from GH to OE/π
n that are everywhere unramified. Hence H1

[p](F,OE/π
n(χ−1))

has bounded cardinality as n → ∞. Passing to the limit with n and tensoring with E, we
obtain the exact sequence

0−→H1
p (F,E(χ−1))−→H1(Fp, E(χ−1))−→H1

p (F,E(1)(χ))∨. (45)

We now observe that the element κnr maps to a non-zero element of the one-dimensional
vector space H1

p (F,E(χ)(1))∨, by (40) and Proposition 1.4. Hence the last arrow in (45) is
surjective, and the same is true for the exact sequence

0−→H1
p,W (F,E(χ−1))−→W−→H1

p (F,E(1)(χ))∨,

for any W ⊂ H1(Fp, E) containing κnr. The lemma now follows from Proposition 1.4.

1.3 A formula for the L -invariant

Let Wcyc be the subspace of H1(Fp, E) spanned by the unramified and cyclotomic cocycles
κnr and κcyc. Write

H1
p,cyc(F,E(χ−1)) := H1

p,Wcyc
(F,E(χ−1)).

By Lemma 1.5, this space is one-dimensional over E. If κ is any non-zero element of this
space, we may therefore write

resp κ = x · κnr + y · κcyc, (46)

for some x, y ∈ E, and the ratio x/y does not depend on the choice of κ. (Note that y 6= 0,
or else (46) contradicts Lemma 1.3 when W is the 1-dimensional space spanned by κnr.)

Proposition 1.6. Let L (χ) be the L -invariant introduced in equation (7) of the introduc-
tion. Then

L (χ) = −x/y.
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Proof. The global reciprocity law of class field theory applied to δ(uχ) ∈ H1
p (F,E(χ)(1))

with uχ ∈ Uχ and κ ∈ H1
p,cyc(F,E(χ−1)) implies that

∑

v

〈resv κ, δv(uχ)〉v = 0,

where the sum is taken over all places v of F . By definition, all the terms in this sum vanish
except the one corresponding to v = p. It follows that

〈resp κ, δp(uχ)〉p = 0.

Combining the expression (46) for resp κ with (40) yields the proposition.

2 Hilbert modular forms

2.1 Definitions

We briefly describe the basic definitions of classical Hilbert modular forms over a totally
real field F . Recall that we have chosen an ordering of the n real embeddings of F . For an
element z ∈ Cn, an integer k, and elements a, b ∈ F , define

(az + b)k :=
n

∏

i=1

(aizi + bi)
k ∈ C,

where ai, bi denote the images of a, b, respectively, under the ith real embedding of F .
Let ψ be a narrow ray class character modulo b with sign r ∈ (Z/2Z)n. Let α ∈ OF be

relatively prime to b. The map α 7→ sgn(α)rψ((α)) defines a character

ψf : (OF/b)× → Q
×

associated to ψ.
Let k be a positive integer. In [12, Page 649], Shimura defines a space Mk(b, ψ) of Hilbert

modular forms of level b and character ψ. Let h denote the size of the narrow class group
Cl+(F ). An element f ∈Mk(b, ψ) is an h-tuple of holomorphic functions

fλ : Hn → C

for λ ∈ Cl+(F ) satisfying certain modularity properties that we now describe (see (2.5a) and
(2.15a-c) of [12]).

For each λ ∈ Cl+(F ), choose a representative fractional ideal tλ. Let GL+
2 (F ) denote the

group of 2 × 2 invertible matrices over F that have positive determinant at each real place
of F . Define

Γλ :=

{(

a b
c d

)

∈ GL+
2 (F ) : a, d ∈ OF , b ∈ t−1

λ d−1, c ∈ btλd, ad− bc ∈ O×F
}

,

18



where d denotes the different of F . Each function fλ satisfies

fλ|γ = ψf (a)fλ (47)

for all γ ∈ Γλ, where
fλ|γ(z) := det(γ)k/2(cz + d)−kfλ(γz). (48)

In (48), the positive square root is taken in

det(γ)k/2 :=
n

∏

i=1

det(γi)
k/2

and

γz :=

(

a1z1 + b1
c1z1 + d1

, . . . ,
anzn + bn
cnzn + dn

)

.

In [12, Page 648], Shimura defines a Hecke operator S(m) for each integral ideal m

relatively prime to b on the space of h-tuples f = (fλ) satisfying (47). We do not recall the
definition of S(m) here. The space Mk(b, ψ) is defined as the set of f such that

S(m)f = ψ(m)f, for all m with (m, b) = 1.

The modularity property (47) implies that fλ has a Fourier expansion

fλ(z) = aλ(0) +
∑

b∈tλ
b�0

aλ(b)eF (bz),

where eF (x) = exp(2πi · TrF/Q(x)). We call the coefficients aλ(b) the unnormalized Fourier
coefficients of f , and define also the normalized Fourier coefficients c(m, f) and cλ(0, f) of f
as follows. Any non-zero integral ideal m may be written m = (b)t−1

λ with b totally positive
(and b ∈ tλ) for a unique λ ∈ Cl+(F ). Define

c(m, f) := aλ(b) N(tλ)
−k/2. (49)

The right side of (49) is easily seen to depend only on m and not on the choice of b since
fλ(εz) Nεk/2 = fλ(z) for every totally positive unit ε of F . Similarly we define

cλ(0, f) := aλ(0) N(tλ)
−k/2

for each λ ∈ Cl+(F ). Note that our normalized Fourier coefficients c(m, f) are denoted
C(m, f) in [12]; we have chosen to remain consistent with the notation of [17].

If for each γ ∈ GL+
2 (F ) and λ ∈ Cl+(F ), the function fλ|γ has constant term equal to 0,

then f is called a cusp form. The space of cusp forms of weight k, level b and character ψ
is denoted Sk(b, ψ).
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2.2 Eisenstein Series

The most basic examples of Hilbert modular forms arise from Eisenstein series attached to
pairs of narrow ideal class characters of F .

Let a and b be integral ideals of F , and let η and ψ be (possibly imprimitive) E-valued
characters of the narrow ideal class group modulo a and b, respectively, with associated signs
q, r ∈ (Z/2Z)n. Let k ≥ 1 be an integer satisfying

q + r ≡ (k, k, . . . , k) (mod 2Zn).

We view the characters ηψ and ηψ−1 as having modulus ab. Here and elsewhere, an expres-
sion like L(ψη−1, 1 − k) without a subscript on the L is assumed to be taken with the set
S in equation (1) equal to the set of archimedean primes and those dividing the modulus of
the given character.

Proposition 2.1. For all k ≥ 1, there exists an element Ek(η, ψ) ∈Mk(ab, ηψ) such that

c(m, Ek(η, ψ)) =
∑

r|m

η
(m

r

)

ψ(r) Nrk−1, (50)

for all non-zero ideals m of OF . When k > 1, we have

cλ(0, Ek(η, ψ)) =

{

2−nη−1(tλ)L(ψη−1, 1 − k) if a = 1,

0 otherwise.
(51)

When k = 1, we have E1(η, ψ) = E1(ψ, η), and

cλ(0, E1(η, ψ)) = 2−n ·



















η−1(tλ)L(ψη−1, 0) if a = 1 and b 6= 1,

ψ−1(tλ)L(ηψ−1, 0) if b = 1 and a 6= 1,

η−1(tλ)L(ψη−1, 0) + ψ−1(tλ)L(ηψ−1, 0) if a = b = 1,

0 if a 6= 1 and b 6= 1.

(52)

Remark 2.2. This proposition is well-known to the experts, and follows easily, for example,
from Katz’s computation of the q-expansion of Eisenstein series in Chapter III of [9]. Since
our notations differ somewhat from those of [9], we have supplied the details of the proof
of formulae (51) and (52) for the sake of being self-contained. Furthermore, some of the
objects that are introduced in our proof of (51) and (52) will be used in later calculations.
But the reader willing to take Proposition 2.1 on faith may wish to skip the proof on a
first reading; in fact, in the remainder of Section 2.2 we assemble computations of constant
terms of Eisenstein series at various cusps, and we recommend that the reader continue on
to Section 2.3 and refer back to Section 2.2 as necessary.

Proof of Proposition 2.1. The existence of the Eisenstein series Ek(η, ψ) satisfying (50) is
given by [12, Proposition 3.4]. We recall the definition of Ek(η, ψ) given there. Let

U = {u ∈ O×F : Nuk = 1, u ≡ 1 (mod ab)}.
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For k ≥ 1, we set Ek(η, ψ) = (fλ), where fλ(z) is defined via Hecke’s trick as follows. For
z ∈ Hn and s ∈ C with Re(2s+ k) > 2, define

fλ(z, s) := C · N(tλ)
−k/2

Nb

∑

r∈Cl(F )

Nrk
∑

a∈r
b∈d−1b−1t−1

λ
r

(a,b) mod U, (a,b)6=(0,0)

sgn(a)qη(ar−1)

(az + b)k|az + b|2s×

∑

c∈tλr−1/btλr−1

sgn(c)rψ(ct−1
λ r)eF (−bc)

(53)

where

C :=

√
dF · Γ(k)n

[O×F : U ] N(d)(−2πi)kn
. (54)

The sums in (53) run over representatives r for the wide class group Cl(F ), representatives
(a, b) for the non-zero elements of the product r× d−1b−1t−1

λ r modulo the action of U (which
acts by diagonal multiplication on the two factors), and representatives c for tλr

−1/btλr
−1.

The term sgn(a)qη(ar−1) in (53) for a = 0 should be interpreted as being equal to 0 if a 6= 1
and equal to η(r−1) if a = 1; a similar interpretation holds for c = 0. Let us now assume
that ψ is a primitive character, i.e. that the conductor of ψ is b. From [12, (3.11)], we find
that the last sum in (53) may be evaluated as follows:

∑

c∈tλr−1/btλr−1

sgn(c)rψ(ct−1
λ r)eF (−bc) = sgn(−b)rψ−1(−bdbtλr

−1)τ(ψ). (55)

Here τ(ψ) is the Gauss sum attached to ψ, defined by

τ(ψ) :=
∑

x∈b−1d−1/d−1

sgn(x)rψ(xbd)eF (x). (56)

When b = 1, we interpret (56) as τ(ψ) = ψ(d).
For fixed z, the function fλ(z, s) has a meromorphic continuation in s to the entire

complex plane. The function fλ(z) is defined as fλ(z, 0). Note that if k > 2 the Hecke
regularization process is not necessary; the series in (53) with s = 0 converges and yields the
definition of fλ(z).

Suppose that k > 1. By [12, (3.7)], the unnormalized constant term aλ(0) of fλ(z) is
equal to 0 if a 6= 1, and is equal to the value of

C · N(tλ)
−k/2τ(ψ)

Nb

∑

r∈Cl(F )

Nrk
∑

b∈d−1b−1t−1
λ

r/U
b6=0

η(r−1) sgn(−b)rψ−1(−bdbtλr
−1)

Nbk|Nb|2s (57)

at s = 0 if a = 1. Note that this is the value obtained by sending each zi → ∞i in (53).
The map

(r, b) 7→ f = (b)dbtλr
−1
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is a surjective [O×F : U ]-to-1 map from the set of pairs (r, b) in (57) to the set of non-zero
integral ideals of F . We therefore find that aλ(0) is the value at s = 0 of the function

√
dF N(tλ)

k/2 N(db)k−1Γ(k)nτ(ψ)

η(dbtλ)(2πi)kn

∑

f⊂OF

ηψ−1(f)

Nfk N(d−1b−1t−1
λ rf)2s

, (58)

where r is the chosen representative of Cl(F ) equivalent to dbtλf
−1. The value at s = 0 of the

sum in (58) is evidently L(ηψ−1, k). Since τ(ψη−1) = τ(ψ)η−1(db), the functional equation
for Hecke L-series (see [10, Theorem 3.3.1]) yields

aλ(0) =
N(tλ)

k/2η−1(tλ)

2n
L(ψη−1, 1 − k)

as desired.
When k = 1, [12, (3.7)] shows that the formula (57) requires an extra term equal to

N(tλ)
1/2τ(ψ)

2n[O×F : U ] Nb

∑

r∈Cl(F )

t∈b−1d−1t−1
λ

r/d−1t−1
λ

r

sgn(t)rψ−1(tdbtλr
−1)

∑

b∈r/U
b6=0

sgn(b)qη(br−1) · sgn(Nb)|Nb|−2s. (59)

The value of (59) at s = 0 is easily seen to equal 0 if b 6= 1, and to equal

N(tλ)
1/2ψ−1(tλ)

2n
L(ηψ−1, 0)

if b = 1. This completes the proof when ψ is primitive.
If ψ is imprimitive with conductor b0 | b, let ψ0 denote the associated primitive character.

Raising the modulus of ψ0 at a prime already dividing b0 affects neither L(ηψ−1
0 , s) nor

Ek(η, ψ0). Therefore it suffices to consider the case when the modulus of ψ0 is raised at
a prime q - b0, that is, when b = b0q. Then L(ηψ−1, s) is obtained from L(ηψ−1

0 , s) by
removing the Euler factor at q. Meanwhile, Ek(η, ψ) is obtained from Ek(η, ψ0) as follows.
For every modular form f ∈ Mk(b0, ψ0), there exists a modular form f |q ∈ Mk(b, ψ) such
that for nonzero integral ideals m we have

c(m, f |q) =

{

c(m/q, f) q | m

0 q - m,

and for λ ∈ Cl+(F ) we have
cλ(0, f |q) = cλq(0, f)

(see [12, Proposition 2.3]). Then it is easy to verify from (50) that

Ek(η, ψ) = Ek(η, ψ0) − ψ0(q) Nqk−1Ek(η, ψ0)|q.
Since

(

η−1(tλ) − ψ0(q) Nqk−1η−1(tλq)
)

L(ψ0η
−1, 1 − k) = η−1(tλ)L(ψη−1, 1 − k)

and
(

ψ−1
0 (tλ) − ψ0(q)ψ−1

0 (tλq)
)

L(ηψ−1
0 , 0) = 0,

we obtain the desired result for imprimitive ψ as well.
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We will also need to compute the constant terms in the Fourier expansions of certain
Eisenstein series at particular cusps different from ∞. More precisely, let

A = (Aλ) =

(

1 xλ
αλ yλ

)

λ∈Cl+(F )

∈ SL2(F )h, (60)

where xλ, yλ, and αλ are chosen such that

αλ ∈ pdtλ, xλ ∈ d−1t−1
λ , and yλ ∈ n.

Recall that for any Hilbert modular form f = (fλ), the slash operator is defined by

f |A := (fλ|Aλ).

Proposition 2.3. Fix k > 2. Suppose that p is the only prime of F above p. Let η and
ψ be narrow ray class characters of conductors a and b, respectively, with ab = np and
ηψ = χω1−k. Then

cλ(0, Ek(η, ψ)|A) = 0

unless a = n, b = p, and there exists a narrow ray class character ν of conductor 1 such that

η = χ · ν−1, ψ = ω1−k · ν.

In this case, we have

cλ(0, Ek(η, ψ)|A) = sgn(αλ)χ(αλp
−1t−1

λ d−1) · ν(tλ/n
2)

〈Nn〉k−1
· 2−n

τ(χ−1)
· LS(χ−1ω1−kν2, 1 − k).

Proof. Write Ek(η, ψ) = (fλ). For k > 2, the series (53) with s = 0 converges and yields fλ.
If for each a ∈ r and b ∈ d−1b−1t−1

λ r we define u and v by the matrix equation
(

a b
)

Aλ =
(

u v
)

, (61)

then

fλ|Aλ(z) = C · N(tλ)
−k/2

Nb

∑

r,a,b

Nrk · sgn(a)qη(ar−1)

(uz + v)k

∑

c

sgn(c)rψ(ct−1
λ r)eF (−bc), (62)

where the indices of the sums are as in (53). To compute the unnormalized constant term
of (62), we send each zi → ∞i; the only contribution arises when u = 0. This occurs when
a = −bαλ and v = b. By the choice of αλ, the conditions bαλ ∈ r and b ∈ d−1b−1t−1

λ r imply
that b ∈ d−1(p, b)−1t−1

λ r. If p - b then p | a and bαλr
−1 ⊂ p; thus η(ar−1) = 0, and the

constant term of fλ|Aλ is 0. We therefore suppose p | b, and obtain for the constant term

C · N(tλ)
−k/2 sgn(αλ)

qη(αλp
−1d−1t−1

λ )

Nb

∑

r∈Cl(F )

Nrk
∑

b∈d−1p−1t−1
λ

r/U
b6=0

sgn(−b)qη(−bdptλr
−1)

Nbk
×

∑

c∈tλr−1/tλr−1b

sgn(c)rψ(ct−1
λ r)eF (−bc).

(63)
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If b 6= p, then a prime q 6= p divides the conductor of ψ since ab = np and ηψ = χω1−k is
primitive away from p. For c ∈ tλr

−1/tλr
−1b in a fixed residue class modulo tλr

−1p, the value
eF (−bc) is constant; the existence of q dividing the conductor of ψ implies that the sum of
sgn(c)rψ(ct−1

λ r) over the c in each such class is 0.
Therefore, we are reduced to considering the situation b = p, a = n. Now η = χω1−kψ−1

has conductor indivisible by p. Therefore ψ = ω1−kν for some narrow ray class character
ν of conductor 1, and η = χν−1. When k 6≡ 1 (mod (p − 1)), the character ψ is primitive,
and we may apply (55). Then an argument following the proof of Proposition 2.1 using the
change of variables f = (b)dbtλr

−1 and the functional equation for L(ηψ−1, k) shows that the
value of (63) is equal to

N(tλ)
k/2 · sgn(αλ)χ(αλp

−1t−1
λ d−1) · ν(tλ/n

2)

〈Nn〉k−1
· 2−n

τ(χ−1)
· LS(χ−1ω1−kν2, 1 − k). (64)

When k ≡ 1 (mod (p− 1)), the sum over c in (63) is easy to evaluate directly, and via the
same technique one again arrives at (64).

For weight k = 1, the analogue of Proposition 2.3 requires a separate treatment.

Proposition 2.4. Suppose that p is the only prime of F above p and that n 6= 1. Then

cλ(0, E1(1, χ)|A) = sgn(αλ)χ(αλp
−1t−1

λ d−1)
2−n

τ(χ−1)
LR(χ−1, 0).

Proof. Since χ is primitive of conductor n, the function fλ|Aλ(z) is given by the value of the
function

C · N(tλ)
−1/2

Nn
|αλz + yλ|2s ·

∑

r,a,b

Nr · sgn(−b)χ−1(−bdntλr
−1)τ(χ)

(uz + v)|uz + v|2s . (65)

at s = 0. Here the indices of the sum are as in (53) and (u, v) is defined in (61). The map
(a, b) 7→ (u, v) induces a bijection between the sets

(

r × d−1n−1t−1
λ r − {(0, 0)}

)

/ U

and
(

rn−1 × d−1t−1
λ r − {(0, 0)}

)

/ U.

Furthermore, since b = −xλu+ v and vdntλr
−1 ∈ n, we have

sgn(−b)χ−1(−bdntλr
−1) = sgn(xλu)χ

−1(xλudntλr
−1)

= (−1)n sgn(αλ)χ(αλp
−1d−1t−1

λ ) · sgn(u)χ−1(unr−1),

where the last equality uses xλαλ ≡ −1 (mod n) and χ(p) = 1.
Let r′ = rn−1 and t′λ = tλn

−1 denote new representatives for Cl(F ) and Cl+(F ), respec-
tively. Thus the function in (65) may be written as the product of the constant

Nn−1/2 · (−1)n sgn(αλ)χ(αλp
−1d−1t−1

λ ) · τ(χ) (66)
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and the function

C · N(t′λ)
−1/2|αλz + yλ|2s ·

∑

r′,u,v

Nr′ · sgn(u)χ−1(u(r′)−1)

(uz + v)|uz + v|2s , (67)

where (u, v) ranges over representatives for

(

r′ × d−1(t′λ)
−1r′ − {(0, 0)}

)

/ U.

The expression in (67) at s = 0 is precisely the λn−1 component of E1(χ
−1, 1) given the

representatives t′λ for Cl+(F ). Therefore, its unnormalized constant term is equal to

N(t′λ)
1/2

2n
L(χ−1, 0). (68)

Using the fact that
τ(χ)τ(χ−1) = (−1)n Nn

and that N(t′λ) = N(tλ)/Nn, the expressions (66) and (68) combine to show that the nor-
malized constant term of fλ|Aλ is

sgn(αλ)χ(αλp
−1d−1t−1

λ ) · 2−n

τ(χ−1)
LR(χ−1, 0)

as desired.

When L(ψ, 1 − k) 6= 0, we define the normalized Eisenstein series

Gk(1, ψ) :=
2n

L(ψ, 1 − k)
Ek(1, ψ), (69)

each of whose constant coefficients cλ(Gk(1, ψ), 0) is equal to 1. The Eisenstein series
Gk−1(1, ω

1−k) plays an important role in our constructions. The following proposition com-
putes its constant term at the cusp A∞, where A is given in (60).

Proposition 2.5. Suppose that p is the only prime of F above p. For k > 2 we have

cλ(0, Gk−1(1, ω
1−k)|A) = 1.

Proof. We must show that

cλ(0, Ek−1(1, ω
1−k)|A) =

1

2n
L(ω1−k, 2 − k).

The argument used in the proof of Proposition 2.3 with (χ, n, χω1−k) replaced by (1, 1, ω1−k)
gives the desired equality. The details are left to the reader.
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2.3 A product of Eisenstein series

Recall that χ is a primitive character of conductor n and that p | p satisfies χ(p) = 1. Set

S = {λ | np∞}, R = S − {p}.

Adjoining a finite prime q - np to S multiplies L′S,p(χω, 0) and LR(χ, 0) by 1 − χ(q), and
leaves L (χ) unchanged when χ(q) 6= 1, so it suffices to prove Theorem 2 with this minimal
choice of S. Let p′ denote the ideal of F given by

p′ =
∏

q|p, q6=p

q,

and define
nR = lcm(n, p′), nS = lcm(n, p′p).

We will denote by χR the character χ viewed as having modulus nR (in particular, we have
χR(q) = 0 for all q | p′). We always view the character χω1−k as having modulus nS, even
when it has smaller conductor. In particular, χω0 6= χ, since χω0(p) = 0 while χ(p) = 1.
Occasionally, we will write χS instead of χω0.

In this section, we consider the modular form

Pk := E1(1, χR) ·Gk−1(1, ω
1−k) ∈Mk(nS, χω

1−k). (70)

It is a fact that every modular form in Mk(nS, χω
1−k) can be written uniquely as a linear

combination of a cusp form and the Eisenstein series Ek(η, ψ), where (η, ψ) run over the set
J of pairs of (possibly imprimitive) characters of modulus mη and mψ respectively, satisfying

mηmψ = nS, ηψ = χω1−k.

(For k = 2, this is explained in [15, Prop. 1.5], and the case of general k ≥ 2 follows from
the same argument.) For each (η, ψ) ∈ J , let ak(η, ψ) ∈ E be the unique constant such that

Pk =

(

A cusp
form

)

+
∑

(η,ψ)∈J

ak(η, ψ)Ek(η, ψ). (71)

We will be particularly interested in the coefficients ak(1, χω
k−1) and ak(χ, ω

k−1) that appear
in this linear combination. It turns out that these coefficients can be expressed as ratios of
special values of the classical L-function LR(χ, s) and of the p-adic L-function LS,p(χω, s).

Proposition 2.6. For all integers k ≥ 2, we have

ak(1, χω
1−k) =

LR(χ, 0)

LS,p(χω, 1 − k)
= −Lan(χ, k)

−1.
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Proof. The result follows by comparing the constant terms on both sides of (71). More
precisely, since the constant terms of Gk−1(1, ω

1−k) are equal to 1, it follows that

cλ(0, Pk) = cλ(0, E1(1, χR)) = 2−n ·
{

LR(χ, 0) if nR 6= 1

LR(χ, 0) + χ−1(tλ)LR(χ−1, 0) if nR = 1.
(72)

On the other hand, the constant terms of Ek(η, ψ) for (η, ψ) ∈ J are equal to 0 except for
the h characters η with mη = 1. For such η, the h-tuple of constant terms cλ(0, Ek(η, ψ)) is
equal to

2−nLS(η
−2χω1−k, 1 − k) × (η−1(tλ1), . . . , η

−1(tλh)).

The linear independence of the characters of Cl+(F ) implies that these h-tuples are linearly
independent. It follows that ak(η, ψ) = 0 for all unramified η 6∈ {1, χ}, and that

ak(1, χω
1−k) =

LR(χ, 0)

LS,p(χω, 1 − k)
,

as desired.

Consider now the special case where p is the unique prime of F lying above p, so in
particular χR = χ is a primitive character of conductor nR = n. We will be interested in the
coefficient ak(χ, ω

1−k) of Ek(χ, ω
1−k) in the linear combination (71). If nR = n = 1, observe

that the η = χ coefficient in the proof of Proposition 2.6 yields

ak(χ, ω
1−k) =

LR(χ−1, 0)

LS,p(χ−1ω, 1 − k)
. (73)

The following proposition shows that a similar formula holds more generally whenever p is
the unique prime of F lying above p.

Proposition 2.7. Suppose that p is the unique prime above p in F . For an integer k > 2,
we have

ak(χ, ω
1−k) =

LR(χ−1, 0)

LS,p(χ−1ω, 1 − k)
· 〈Nn〉k−1 = −Lan(χ

−1, k)−1 · 〈Nn〉k−1.

Proof of Proposition 2.7. Since we have proven the result in the case n = 1 in equation (73)
already, we assume n 6= 1. The computation of ak(χ, ω

1−k) will proceed by slashing equation
(71) with the collection A = (Aλ) of matrices given in (60), and then comparing constant
terms.

By Proposition 2.3, we know that cλ(Ek(η, ψ)|A) = 0 unless a = n, b = p, and the
characters η and ψ are of the form

η = χ · ν−1, ψ = ω1−k · ν, (74)

where ν is a narrow ray class character of conductor 1. In this remaining case, Proposition
2.3 asserts that

cλ(0, Ek(η, ψ)|A) = sgn(αλ)χ(αλp
−1t−1

λ d−1) · ν(tλ/n
2)

〈Nn〉k−1
· 2−n

τ(χ−1)
· LS(χ−1ω1−kν2, 1 − k).
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As in the proof of Proposition 2.6, we see that for the h unramified characters ν corresponding
to the pairs (η, ψ) of the form (74), the h-tuples cλ(Ek(η, ψ)|A)) are constant multiples of
the vectors (ν(tλ1), . . . , ν(tλh)). By the linear independence of these h-tuples, the coefficients
ak(η, ψ) can once again be read off from the constant terms of Pk|A. But it follows from
Propositions 2.3 through 2.5 that

cλ(Pk|A) = sgn(αλ)χ(αλp
−1t−1

λ d−1) · 2−n

τ(χ−1)
LR(χ−1, 0).

Therefore we conclude that

ak(χ, ω
1−k) =

LR(χ−1, 0)

LS,p(χ−1ω, 1 − k)
· 〈Nn〉k−1

and that ak(η, ψ) = 0 for (η, ψ) as in (74) when ν 6= 1.

2.4 The ordinary projection

Recall that E is a finite extension of Qp containing the values of the character χ, and that
we have fixed an embedding Qp ⊂ C. Let Mk(nS, χω

1−k;OE) denote the OE-submodule of
Mk(nS, χω

1−k) consisting of modular forms with all normalized Fourier coefficients lying in
OE. The ordinary projection operator

e = lim
r→∞

(
∏

q|p

Uq)
r!

gives rise to an idempotent in the endomorphism ring of Mk(nS, χω
1−k;OE). We extend it

to Mk(nS, χω
1−k;E) by E-linearity, using the fact that

Mk(nS, χω
1−k;E) = Mk(nS, χω

1−k;OE) ⊗OE E.

The projection e preserves the cusp forms as well as the lines spanned by the various Eisen-
stein series Ek(η, ψ) with (η, ψ) ∈ J . More precisely, if q | p, then q | nS = mηmψ, so we
have:

UqEk(η, ψ) = (η(q) + ψ(q)(Nq)k−1)Ek(η, ψ)

=

{

η(q) if q - mη

ψ(q)(Nq)k−1 if q | mη

}

× Ek(η, ψ).

It follows that for k ≥ 2:

eEk(η, ψ) =

{

Ek(η, ψ) if gcd(p,mη) = 1,
0 otherwise.

(75)

Let
P o
k := ePk (76)

denote the projection of Pk to the ordinary subspace.
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Proposition 2.8. The modular form P o
k can be written

P o
k =

(

An ordinary
cusp form

)

+
∑

(η,ψ)∈Jo

ak(η, ψ)Ek(η, ψ), (77)

where (η, ψ) ranges over the set J o of pairs (η, ψ) ∈ J satisfying

mηmψ = nS, ηψ = χω1−k, (p,mη) = 1.

Note that for (η, ψ) = (1, χω1−k) and (χ, ω1−k), the coefficients ak(η, ψ) are the ones
given in Propositions 2.6 and 2.7, respectively (the latter only in the case where p is the only
prime of F above p).

2.5 Construction of a cusp form

We begin by defining a modular form Hk as in the introduction, by taking a suitable linear
combination of the Eisensein series Ek(1, χω

1−k) and Ek(χ, ω
1−k) and the form P o

k . It is
useful to distinguish two cases.

Case 1. The set R contains a prime above p, i.e. F has a prime above p other than p.
This case is the simplest of the two, but did not arise in the introduction since p = (p) when
F = Q. We set

Hk := ukEk(1, χω
1−k) + wkP

o
k , (78)

where

uk :=
1

1 + Lan(χ, k)
, wk :=

Lan(χ, k)

1 + Lan(χ, k)
. (79)

Note that the vector (uk, wk) is proportional to the vector (ak(1, χω
1−k),−1), but has been

normalized to that uk + wk = 1.

Case 2. The set R contains no primes above p, i.e. p is the unique prime of F above p.
In this case the definition of Hk involves the Eisenstein series E(χ, ωk−1) as well:

Hk := ukEk(1, χω
1−k) + vkEk(χ, ω

1−k) + wkP
o
k , (80)

where

uk :=
Lan(χ, k)

−1

ck
, vk :=

Lan(χ
−1, k)−1〈Nn〉k−1

ck
, wk :=

1

ck
, (81)

with
ck := Lan(χ, k)

−1 + Lan(χ
−1, k)−1〈Nn〉k−1 + 1.

In this case, the vector (uk, vk, wk) is proportional to (ak(1, χω
1−k), ak(χ, ω

1−k),−1) and is
normalized so that uk + vk + wk = 1.

It follows that the modular form Hk ∈ Mk(nS, χω
1−k) is a linear combination of a cusp

form and the Eisenstein series Ek(η, ψ), where (η, ψ) ranges over the elements J o with η 6= 1
in case 1, and η 6= 1, χ in case 2.
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Lemma 2.9. We have the following:

1. For each (η, ψ) ∈ Jo with η /∈ {1, χ}, there is a Hecke operator T(η,ψ) satisfying

T(η,ψ)Ek(η, ψ) = 0, T(η,ψ)E1(1, χS) 6= 0.

2. In case 1, there is a Hecke operator T(χ,ω1−k) satisfying

T(χ,ω1−k)Ek(χ, ω
1−k) = 0, T(χ,ω1−k)E1(1, χS) 6= 0.

Proof. Let us write η ∼ η′ if the two characters η and η′ agree on all but finitely many
primes, i.e., if they come from the same primitive character.

Let (η, ψ) be any element of Jo. If η ∼ 1, then ψ ∼ χω1−k and the condition (η, ψ) ∈ Jo

implies that ψ has conductor nS. Therefore η has conductor 1 and η = 1. If η ∼ χ, then
η is necessarily of modulus n when (n, p) = 1, and hence η = χ. Hence, in proving part 1
we may assume that η 6∼ 1, χ. Let H(η,ψ) be the abelian extension of F that is cut out by η
and ψ by class field theory, and view η and ψ as characters of Gal(H(η,ψ)/F ). Let σ be any
element of Gal(H(η,ψ)/F ) that does not belong to ker(η)∪ker(ηχ−1). Such an element exists
because a group cannot be the union of two of its proper subgroups. By the Chebotarev
density theorem, there is a prime λ - nS of F whose Frobenius element is equal to σ. For
such a prime we have

{η(λ), ψωk−1(λ)} 6= {1, χ(λ)}, η(λ) × ψωk−1(λ) = 1 × χ(λ).

It follows that
η(λ) + ψωk−1(λ) 6= 1 + χ(λ).

Now, set

T(η,ψ) := Tλ − η(λ) − ψ(λ)(Nλ)k−1 (82)

= Tλ − η(λ) − ψωk−1(λ)〈Nλ〉k−1.

It is easy to see that the operator T(η,ψ) has the desired properties, in light of the fact that

TλE1(1, χS) = (1 + χ(λ))E1(1, χS),

TλEk(η, ψ) = (η(λ) + ψ(λ)(Nλ)k−1)Ek(η, ψ).

This proves part 1. Part 2 is proved by choosing a prime q of F above p different from p,
and setting

T(χ,ω1−k) := Uq − χ(q). (83)

Since Uq acts with eigenvalue χ(q) on Ek(χ, ω
1−k) and with eigenvalue 1 on E1(1, χS), the

result follows (recall that χ(q) 6= 1 by Lemma 1.1).

Corollary 2.10. The modular form

Fk :=





∏

(η,ψ)

T(η,ψ)



Hk,

where the product is taken over all (η, ψ) ∈ J o with η 6= 1 in case 1 and η 6= 1, χ in case 2,
belongs to Sk(nS , χω

1−k).
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3 Λ-adic forms

3.1 Definitions

We now recall the basic definitions of Λ-adic forms. Let χ be any totally odd E-valued
narrow ray class character of F modulo n. Recall from the introduction the Iwasawa algebra
Λ ' OE[[T ]], which is topologically generated over OE by functions of the form k 7→ ak with
a ∈ 1 + pZp. For each k ∈ Zp, write

νk : Λ → OE

for the evaluation map at k. We will write Λ(k) ⊂ FΛ for the localization of Λ at ker νk, and
sometimes view νk as a homomorphism from Λ(k) to E.

In Section 2, we recalled the definition of the space Mk(nS , χω
1−k) of classical Hilbert

modular forms of weight k, level nS , and character χω1−k. To each such form f is associated
its set of normalized Fourier coefficients c(m, f), indexed by the nonzero integral ideals of F ,
and normalized constant terms cλ(0, f), indexed by the narrow class group Cl+(F ).

Definition 3.1. A Λ-adic form F of level n and character χ is a collection of elements of
Λ:

{

c(m,F ) for all nonzero integral ideals m of F

cλ(0,F ) for λ ∈ Cl+(F ),

such that for all but finitely many k ≥ 2, there is an element of Mk(nS, χω
1−k;E) with

normalized Fourier coefficients νk(c(m,F )) for nonzero integral ideals m, and normalized
constant terms νk(cλ(0,F )) for λ ∈ Cl+(F ).

The space of Λ-adic forms of level n and character χ is denoted M(n, χ). A Λ-adic form
F is said to be a cusp form if νk(F ) belongs to Sk(nS, χω

1−k) for almost all k ≥ 2, and
the space of such cusp forms is denoted S(n, χ). The action of the Hecke operators Tλ for
λ - np and Uq for q | np on Mk(nS, χω

1−k;E) lifts to a Λ-linear action of these operators on
M(n, χ) that preserves the subspace S(n, χ) (see §1.2 of [16]).

Hida’s ordinary projection can still be defined by

e = lim
r→∞

(
∏

q|p

Uq)
r!.

The image of e is the submodule of ordinary forms:

Mo(n, χ) := eM(n, χ), So(n, χ) := eS(n, χ).

The spaces Mo(n, χ) and So(n, χ) are finitely generated torsion-free Λ-modules. Let T̃ and
T denote the Λ-algebras of Hecke operators acting on Mo(n, χ) and So(n, χ) respectively.

By extension, we also call any element of Mo(n, χ) ⊗Λ FΛ or So(n, χ) ⊗Λ FΛ a Λ-adic
modular form or Λ-adic cusp form, respectively. Note that if F is such an element, then its
weight k specialization νk(F ) is defined for almost all k ∈ Zp.
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3.2 Λ-adic Eisenstein series

The most basic examples of Λ-adic forms are the Eisenstein series. Let η and ψ be a pair of
narrow ray class characters modulo mη and mψ respectively, such that ηψ is totally odd.

Proposition 3.2. There exists a Λ-adic modular form

E (η, ψ) ∈ M(mηmψ, ηψ) ⊗FΛ

such that
νk(E (η, ψ)) = Ek(η, ψω

1−k).

Proof. The Eisenstein series Ek(η, ψω
1−k) satisfy

c(m, Ek(η, ψω
1−k)) =

∑

r|m
(r,p)=1

η
(m

r

)

ψ(r)〈Nr〉k−1 (84)

and

cλ(0, Ek(η, ψω
1−k)) =

{

2−nη−1(tλ)Lp(η
−1ψω, 1 − k) if mη = 1

0 otherwise.
(85)

One sees by inspection that the expressions on the right of (84), viewed as functions of k,
belong to the Iwasawa algebra Λ . That the function k 7→ Lp(η

−1ψω, 1 − k) belongs to FΛ

is equivalent to the known assertions about the existence and basic properties of the p-adic
L-functions Lp(η

−1ψω, s) (see, for example, [17, (1.3)]).

We remark in passing that the idea of realizing the special values Lp(η
−1ψω, 1 − k) as

the constant terms of Eisenstein series whose other Fourier coefficients lie in Λ is a key
component of the construction of p-adic L-functions for totally real fields due to Serre and
Deligne-Ribet.

Recall the normalized Eisenstein series Gk−1(1, ω
1−k) with constant term 1. Its p-adic

interpolation is most conveniently described in terms of the space M′ of Λ-adic forms “with
weights shifted by 1”. An element of M′ is a collection of elements c(m,F ) and cλ(0,F ) of
Λ with the property that the specializations {νk(c(m,F )), νk(cλ(0,F )} are the normalized
Fourier coefficients of an element in Mk−1(p, ω

1−k;E). There exists an element G ∈ M′⊗FΛ

satisfying
νk(G ) = Gk−1(1, ω

1−k).

It is defined by the data:

c(m,G ) = 2nζp(F, 2 − k)−1
∑

r|m
(r,p)=1

(Nr)−1〈Nr〉k−1, cλ(0,G ) = 1, (86)

where ζp(F, s) = Lp(1, s) is the p-adic zeta-function attached to F . We see by inspection
that all of the coefficients of G belong to FΛ, and that νk(G ) = Gk−1. The specialization of
G at k = 1 plays a crucial role in our argument.
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Proposition 3.3. Assume Leopoldt’s conjecture for F . The form G belongs to M′ ⊗ Λ(1),
and

ν1(G ) = 1.

Proof. By a result of Colmez (cf. the main theorem of [2]), the non-vanishing of the p-adic
regulator of F is known to imply that the p-adic zeta-function ζp(F, s) has a simple pole at
s = 1. Therefore ζp(F, 2 − k)−1 is regular at k = 1 and vanishes at that point. The result
follows.

3.3 A Λ-adic cusp form

In order to invoke Proposition 3.3, we assume Leopoldt’s conjecture for F in the rest of
Section 3. In case 2, we also assume that assumption (11) holds.

Recall the classical modular forms Pk, P
o
k and Hk in Mk(nS , χω

1−k) that were defined
in Sections 2.3 and 2.4 (see equations (70), (76), (78), and (80)), and the cusp form Fk ∈
Sk(nS, χω

1−k) that was constructed in Corollary 2.10 in Section 2.5.

Proposition 3.4. There exist Λ-adic forms P ∈ M(n, χ)⊗Λ(1), Po, H ∈ Mo(n, χ)⊗Λ(1),
and F ∈ So(n, χ) ⊗ Λ(1) satisfying, for almost all k ≥ 2:

νk(P) = Pk, νk(P
o) = P o

k , νk(H ) = Hk, νk(F ) = Fk. (87)

Proof. The forms P and Po are simply defined by setting

P = E1(1, χR)G , P
o = eP.

To define the modular form H , recall first the coefficients uk, vk and wk that were defined in
equations (79) and (81). In case 1, we set vk = 0 so that in all cases we have uk+vk+wk = 1.
We observe that the coefficients uk, vk and wk can be interpolated by elements u, v, w ∈ FΛ

satisfying u(k) = uk, v(k) = vk, and w(k) = wk for almost all k ≥ 2, since the functions
Lan(χ, k)

−1 and Lan(χ
−1, k)−1 belong to FΛ. A direct calculation then shows that u, v and

w belong to Λ(1). More precisely,

u(1) = 1; v(1) = 0; w(1) = 0 in case 1;

u(1) = L
(t)
an (χ−1,1)

L
(t)
an (χ,1)+L

(t)
an (χ−1,1)

; v(1) = L
(t)
an (χ,1)

L
(t)
an (χ,1)+L

(t)
an (χ−1,1)

; w(1) = 0 in case 2,
(88)

where t denotes the common order of vanishing of Lan(χ, k) + Lan(χ
−1, k) and Lan(χ

−1, k)
at k = 1. It is at this stage that we use the hypothesis (11) appearing in Theorem 2. In
both case 1 and case 2, it can be seen that the coefficients u, v and w belong to Λ(1) and
that u is even invertible in this ring. In particular, the Λ-adic form

H := uE (1, χ) + vE (χ, 1) + wP
o

belongs to Mo(n, χ) ⊗ Λ(1) and satisfies νk(H ) = Hk.
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Finally, we note that the Hecke operators T(η,ψ) of Lemma 2.9 that are defined in equations

(82) and (83) can be viewed as elements of the ordinary Λ-adic Hecke algebra T̃. We may
therefore set

F =
∏

(η,ψ)

T(η,ψ)H

to obtain the desired Λ-adic cusp form satisfying νk(F ) = Fk. Proposition 3.4 follows.

From now on, we will write u1, v1, and w1 for u(1), v(1), and w(1), respectively. We now
analyze the weight 1 specialization of the Λ-adic forms of Proposition 3.4.

Lemma 3.5. We have

ν1(P) = ν1(P
o) = E1(1, χR), ν1(H ) = E1(1, χS),

and
ν1(F ) = t ·E1(1, χS), for some t ∈ E×.

Proof. Proposition 3.3 directly implies that ν1(P) = E1(1, χR). (It is here that Leopoldt’s
conjecture is required in our argument.) To study ν1(P

o), we note that the operator Up

preserves the two-dimensional subspace Wχ ofM1(nS, χ) spanned by E1(1, χR) and E1(1, χS),
and acts non-semisimply on this space, with generalised eigenvalue 1. More precisely, we
have

UpE1(1, χS) = E1(1, χS),

UpE1(1, χR) = E1(1, χR) + E1(1, χS).

The Hecke operators Uq for q | p and q 6= p act on Wχ as the identity. It follows that
e acts as the identity on Wχ, and in particular eE1(1, χR) = E1(1, χR). This shows that
ν1(P

o) = E1(1, χR). The calculation of ν1(H ) is a direct consequence of the fact that

ν1(E (1, χ)) = ν1(E (χ, 1)) = E1(1, χS), u1 + v1 = 1, w1 = 0.

Finally, the conditions satisfied by the Hecke operators T(η,ψ) in Lemma 2.9 and the fact
that E1(1, χS) is an eigenform show that ν1(F ) is a non-zero multiple of E1(1, χS). This
concludes the proof.

3.4 The weight 1 + ε specialization

Let ν1+ε : Λ(1)−→Ẽ = E[ε]/(ε2) be the “weight 1 + ε specialization” that was discussed
in the introduction (cf. equation (31)). We now consider the form H1+ε := ν1+ε(H ), and
calculate its Fourier coefficients in terms of the homomorphism κcyc defined in (16). The
Fourier coefficients of the form ν1(H ) = E1(1, χS) are given, for primes q 6= p, by the sum
of the two characters 1 and χ. The key observation is that the Fourier coefficients of the
infinitesimal lift H1+ε are still given by the sum of two characters lifting 1 and χ.
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Define these two characters ψ1, ψ2 : GF → Ẽ× as follows. The character ψ1 is unramified
outside p and satisfies

ψ1(q) = 1 + v1κcyc(q)ε for all q - p. (89)

The character ψ2 is unramified outside S and satisfies

ψ2(q) = χ(q)(1 + u1κcyc(q)ε) for all q 6∈ S. (90)

As usual, we extend the definitions of ψ1 and ψ2 to totally multiplicative functions defined
on the set of ideals of F by the following formulas, for prime q:

ψ1(q) = 1 if q | p,
ψ2(q) = 0 if q ∈ S.

Proposition 3.6. The Fourier coefficients of H1+ε satisfy c(1, H1+ε) = 1 and, for each
prime ideal q of F , we have

c(q, H1+ε) = ψ1(q) + ψ2(q) if q 6= p (91)

c(p, H1+ε) = 1 + w′(1)ε. (92)

Furthermore, H1+ε is a simultaneous eigenform for the Hecke operators Tq for q 6∈ S and Uq

for q ∈ S with eigenvalues given by (91) and (92).

Proof. We will only consider case 2, i.e. the case when p is the only prime of F above p. (The
analysis of case 1, where v = 0, can be treated by a similar but simpler calculation.) Write
φ1+ε(u) = u1 + u′1ε, and likewise for v and w. Let us also write E1+ε(ψ, η) := ν1+ε(E (ψ, η)).
Given an integral ideal m of F , write m = bpt with p - b. We note that

c(m, E1+ε(1, χ)) =
∑

r|b

χ(r)(1 + κcyc(r)ε), (93)

c(m, E1+ε(χ, 1)) =
∑

r|b

χ(r)(1 + κcyc(b/r)ε). (94)

It follows from the equations w1 = 0 and ν1(P
o) = E1(1, χ) that

H1+ε = (u1E1+ε(1, χ) + v1E1+ε(χ, 1)) +
(

u′1E1(1, χω
0) + v′1E1(χ, ω

0) + w′1E1(1, χ)
)

ε

= (u1E1+ε(1, χ) + v1E1+ε(χ, 1)) + w′1 (E1(1, χ) − E1(1, χS)) ε. (95)

We have used the facts E1(1, χω
0) = E1(χ, ω

0) = E1(1, χS) and u′1 + v′1 +w′1 = 0 in deriving
(95). Using (93) and (94), the mth coefficient of the first term

u1E1+ε(1, χ) + v1E1+ε(χ, 1)
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in (95) may be written:

u1





∑

r|b

χ(r)(1 + κcyc(r)ε)



 + v1





∑

r|b

χ(r)(1 + κcyc(b/r)ε)





=
∑

r|b

χ(r)(1 + u1κcyc(r)ε+ v1κcyc(b/r)ε)

=
∑

r|b

ψ1(b/r)ψ2(r).

Here we have used the fact that u1 + v1 = 1, by (88).
The remaining term

w′1 (E1(1, χ) − E1(1, χS)) ε

in (95) has mth coefficient equal to

t · w′1 · (
∑

r|b

χ(r))ε,

so we obtain

c(m, H1+ε) =
∑

r|b

ψ1(b/r)ψ2(r) + tw′1
∑

r|b

χ(r)ε (96)

=





∑

r|b

ψ1(b/r)ψ2(r)



 × (1 + w′1ε)
t.

Equations (91) and (92) follow immediately from (96). We leave to the reader the exercise,
using (96) and the definition of the Hecke operators (see for instance equation (1.2.5) of [15]),
that H1+ε is indeed an eigenvector for the Hecke operators with the specified eigenvalues.

The eigenform H1+ε determines a Λ(1)-algebra homomorphism valued in the dual num-
bers:

φ1+ε : T̃ ⊗ Λ(1)−→Ẽ = E[ε]/(ε2),

defined by sending a Hecke operator to its eigenvalue on H1+ε. The homomorphism φ1+ε

lifts the homomorphism
φ1 : T̃ ⊗ Λ(1)−→E

describing the eigenvalues of the Hecke operators on the Eisenstein series ν1(H ) = E1(1, χS).
Geometrically, φ1 corresponds to a point on the spectrum of T̃, and φ1+ε describes a tangent
vector at that point.

The fact that the cusp form F is obtained by applying a Hecke operator to H , and that
ν1(F ) 6= 0 (cf. Lemma 3.5), shows that F1+ε is (up to multiplication by an element of Ẽ×)
a normalized cuspidal eigenform with Fourier coefficients in Ẽ and with the same associated
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system of Hecke eigenvalues as H1+ε. Hence φ1+ε factors through the quotient T ⊗ Λ(1) of

T̃ ⊗ Λ(1).
Let T(1) be the localization of T⊗Λ(1) at ker φ1. We will view φ1+ε as a homomorphism

on T(1), which is possible since φ1+ε factors through the natural map T⊗ Λ(1)−→T(1). The
following theorem summarizes the main results of this section.

Theorem 3.7. Assume Leopoldt’s conjecture for F , and in case 2 assume further that (11)
holds. Let ψ1, ψ2 be as in (89) and (90). There exists a Λ(1)-algebra homomorphism

φ1+ε : T(1)−→E[ε]/(ε2)

satisfying

φ1+ε(Tq) = ψ1(q) + ψ2(q) if q /∈ S; (97)

φ1+ε(Uq) = ψ1(q) if q ∈ R, (98)

φ1+ε(Up) = 1 + u1Lan(χ)ε. (99)

Proof. Equations (97) and (98) simply restate (91). Equation (99) is a consequence of (92)
and the identity (cf. equations (79) and (81))

w(k) = u(k)Lan(χ, k),

which implies that w′1 = u1Lan(χ).

4 Galois representations

In this section, we parlay the homomorphism φ1+ε of Theorem 3.7 into the construction of
a cohomology class κ ∈ H1

p (F,E(χ−1)) satisfying

resp κ = −Lan(χ)κnr + κcyc. (100)

This class will be extracted from the Galois representations attached to the eigenforms in
So(n, χ).

4.1 Representations attached to ordinary eigenforms

Recall that T(1) is the localization of T⊗Λ(1) at ker φ1. Let F(1) be the total ring of fractions
of the local ring T(1). It is isomorphic to a product of fields:

F(1) = F1 × · · · × Ft,

where each Fj is a finite extension of FΛ. Fix a factor F = Fj in this decomposition. We
will write Tq and Uq to denote the images of the corresponding Hecke operators in F under
the natural projection F(1)−→F .
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Recall the cyclotomic character εcyc : GF−→Z×p that was introduced in equation (13) of
the introduction, and satisfies

εcyc(Frobq) = Nq, for all q - p.

The Λ-adic cyclotomic character
εcyc : GF−→Λ×

is given by
εcyc(Frobq)(k) = 〈Nq〉k−1.

The following key result is proved in [16] (cf. Theorems 2 and 4 of loc. cit.).

Theorem 4.1. There is a continuous irreducible Galois representation

ρ : GF → GL2(F)

satisfying

1. The representation ρ is unramified at all primes q 6∈ S, and the characteristic polyno-
mial of ρ(Frobq) is

x2 − Tqx + χ(q)〈Nq〉k−1. (101)

In particular, det ρ = χεcyc.

2. The representation ρ is odd, i.e., the image of any complex conjugation in GF under ρ
has characteristic polynomial x2 − 1.

3. For each q | p, let Gq ⊂ GS denote a decomposition group at q. Then

ρ|Gq
∼=

(

χεcycη
−1
q ∗

0 ηq

)

(102)

where ηq is the unramified character of Gq satisfying

ηq(Frobq) = Uq. (103)

Let V ∼= F2 be the representation space attached to ρ. For any choice of F -basis of V
there is an associated matrix representation

ρ(σ) =

(

a(σ) b(σ)
c(σ) d(σ)

)

, a, b, c, d : GF−→F . (104)

Let R denote the image of T(1) under the projection F(1)−→F . The ring R is a quotient
of T(1) and hence is also a local ring having E as residue field. For x ∈ R, write x ∈ E for its
reduction modulo the maximal ideal m of R. Fix a choice of a complex conjugation δ ∈ GF .
Since the representation ρ is totally odd, we may choose an F -basis of V such that

ρ(δ) =

(

1 0
0 −1

)

.

Assume once and for all that the basis of V has been chosen in this way.

38



Theorem 4.2. The representation ρ satisfies the following properties.

1. For all σ ∈ GF , the entries a(σ) and d(σ) belong to R×, and

a(σ) = 1, d(σ) = χ(σ).

2. The matrix entry b does not vanish identically on the decomposition group Gp at p.

Proof. The traces of ρ(Frobq) are Hecke operators, and hence lie in R. By the Chebotarev
density theorem, the same is true of trace(ρ(σ)) for all σ ∈ GF . The identities

a(σ) =
1

2
(trace ρ(σ) + trace ρ(σδ)) (105)

and

d(σ) =
1

2
(trace ρ(σ) − trace ρ(σδ)) (106)

imply that a(σ), d(σ) ∈ R. Furthermore, (101) combined with

φ1(Tq) = 1 + χ(q) for q 6∈ S

implies that trace ρ(σ) = 1 +χ. Hence part 1 follows from (105) and (106). We now turn to
the proof of part 2. Let B denote the R-submodule of F generated by the b(σ) as σ ranges
over GF . A standard compactness argument shows that B is a finitely generated R-module.
Since d(σ) belongs to R×, the function K(σ) := b(σ)/d(σ) also takes its values in B. Let

K : GF−→B, B := B/mB

denote its mod m reduction. A direct calculation using the multiplicativity of the repre-
sentation ρ of equation (104) reveals that the function K is a continuous one-cocycle in
Z1(GF , B(χ−1)). Furthermore, part 3 of Theorem 4.1 gives, for each q | p, a change of basis
matrix

(

Aq Bq

Cq Dq

)

∈ GL2(F) (107)

satisfying

(

a(σ) b(σ)
c(σ) d(σ)

) (

Aq Bq

Cq Dq

)

=

(

Aq Bq

Cq Dq

) (

χεcycη
−1
q (σ) ∗

0 ηq(σ)

)

(108)

for all σ ∈ Gq. Comparing the upper left-hand entries in (108) gives the identity

Cqb(σ) = Aq

[

χεcycη
−1
q (σ) − a(σ)

]

(109)

for all σ ∈ Gq. Suppose now that q 6= p. Since χ 6= 1 on Gq, there is a σq ∈ Gq for
which χ(σq) 6= 1 and hence for which the expression in square braces on the right of (109),
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evaluated at σ = σq, is a unit in R. It follows that Cq 6= 0 and that the ratio wq := Aq/Cq

belongs to B. Equation (109) can be rewritten as the equation in B:

K(σ) =

[

χεcycη
−1
q (σ) − a(σ)

]

d(σ)
wq, for all σ ∈ Gq. (110)

In order to reduce this equation modulo m, we note that

ν1(εcyc) = 1, φ1(ηq(Frobq)) = c(q, E1(1, χS)) = 1,

and hence φ1(ηq(σ)) = 1 for all σ ∈ Gq. Part 1 of Theorem 4.2 then yields

K(σ) = (1 − χ−1(σ))wq for all σ ∈ Gq. (111)

It follows that K is locally trivial at all q | p′, and hence yields a class [K] ∈ H1
p (F,B(χ−1)).

Suppose that b vanishes on Gp. The same is then true of the cocycle K, which is therefore
trivial at p. Hence by Lemma 1.5, the cohomology class [K] is trivial. We may therefore
write K as a coboundary:

K(σ) = (1 − χ−1(σ))θ, (112)

for some θ ∈ B and all σ ∈ GF . Evaluating (112) at σ = δ shows that in fact θ = 0,
and hence K = 0 as a cocycle on GF . But the image of K generates the R-module B by
definition, and hence B = 0. Since B is a finitely generated R-module, Nakayama’s Lemma
implies that B = 0, contradicting the irreducibility of ρ. This contradiction proves part
2.

4.2 Construction of a cocycle

In the previous section, we constructed, for each quotient Fj of F(1), a specific Galois repre-
sentation

ρj : GF−→GL2(Fj).

The product of these representations yields a Galois representation

ρ(1) : GF−→GL2(F(1)).

To lighten the notations we will write ρ instead of ρ(1) and use the symbols a, b, c and d to
denote its matrix entries, with the understanding that in this section, these are now elements
of F(1) = F1 × · · · × Ft.

We now suppose we are given an Λ(1)-algebra homomorphism φ1+ε : T(1) → Ẽ lifting the
homomorphism φ1 corresponding to the modular form E1(1, χS). We suppose that φ1+ε is
given by the sum of two characters ψ1, ψ2 : GF → Ẽ× lifting 1, χ, respectively, as in (97)
and (98).

Lemma 4.3. The Galois representation ρ satisfies the following properties:

40



1. For the chosen complex conjugation δ,

ρ(δ) =

(

1 0
0 −1

)

.

2. For all σ ∈ GF , the entries a(σ) and d(σ) belong to T×(1), and

φ1+ε ◦ a = ψ1, (113)

φ1+ε ◦ d = ψ2. (114)

Proof. Part 1 follows directly from the definition of ρ. The proof of part 2 is identical to the
proof of part 1 of Theorem 4.2, with R replaced by T(1).

The following is the main result of this section.

Theorem 4.4. Let φ1+ε be as above. Write ψ1 = 1 + ψ′1ε, and define a′p ∈ E by

φ1+ε(Up) = 1 + a′pε.

There exists a cohomology class κ ∈ H1
p (F,E(χ−1)) satisfying

resp κ = −a′pκnr + κcyc − resp(ψ
′
1).

Proof. Consider the change of basis matrices
(

Aq Bq

Cq Dq

)

with entries in F(1) satisfying (108). Equation (109) with q = p, combined with part 2 of
Theorem 4.2, shows that the projection of Ap to each factor Fj is non-zero. Hence Ap belongs
to F×(1). Let

b̃(σ) :=
Cp

Ap

× b(σ),

and write B for the T(1)-submodule of F(1) generated by the b̃(σ) as σ ranges over GF . Since

d(σ) belongs to T×(1), the function K(σ) := b̃(σ)/d(σ) takes values in B as well. For each

q | p′, the same reasoning as in the proof of Theorem 4.2 shows that the element Cq belongs

to F×(1) (i.e. it is not a zero divisor), and that the element xq := Cp

Ap
× Aq

Cq
belongs to B. The

restriction of K to Gq satisfies

K(σ) =

[

χεcycη
−1
q (σ) − a(σ)

]

d(σ)
xq, for all σ ∈ Gq. (115)

At the prime p, we have

K(σ) =

[

εcyc(σ)η−1
p (σ) − a(σ)

]

d(σ)
, for all σ ∈ Gp. (116)
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We now claim that the module B is contained in m ⊂ T(1) ⊂ F(1). To see this, let
B] = (B + m)/m, and let K] : GF−→B] be the function obtained by composing K with the
natural surjection B −→ B]. The function

K
]
: GF−→B

]
:= B]/mB]

obtained from K] by reduction modulo the maximal ideal m is a one-cocycle yielding a class

[K
]
] ∈ H1(F,B

]
(χ−1)).

Equation (116) shows that

K](σ) = 0, and hence K
]
(σ) = 0, for all σ ∈ Gp, (117)

whereas equation (115) shows that [K
]
] is locally trivial at all q | p′. It follows from Lemma

1.3 that [K
]
] = 0, and arguing with δ as in the proof of Theorem 4.2, we find that in fact

K
]

= 0 as a function. Since the K](σ) generate the finitely generated T(1)-module B], we
have B] = mB] and hence B] = 0 by Nakayama’s lemma. Thus B ⊂ m, as desired.

We can now complete the proof of Theorem 4.4. Since the function K takes values in
m ⊂ T(1), we may consider its composition with φ1+ε and define a function κ : GF → E by

φ1+ε ◦K(σ) = κ(σ)ε.

The function κ is a one-cocycle representing a class [κ] ∈ H1(F,E(χ−1)). Since xq ∈ B ⊂ m,
(115) implies that [κ] is locally trivial at all q | p′ and therefore belongs to H1

p (F,E(χ−1)).
Finally, combining (116) with the equations

φ1+ε ◦ εcyc = 1 + κcycε,

φ1+ε ◦ ηp = 1 + a′pκnrε,

φ1+ε ◦ a = 1 + ψ′1ε,

φ1+ε ◦ d = χ+ ψ′2ε,

(the latter two arising in (113) and (114)) yields

κ(σ) = −a′p · κnr(σ) + κcyc(σ) − ψ′1(σ)

for all σ ∈ Gp. Theorem 4.4 follows.

Proof of Theorem 2. Applying Theorem 4.4 to the Λ(1)-algebra homomorphism φ1+ε con-
structed in Theorem 3.7, we find that ψ′1 = v1κcyc and a′p = u1Lan(χ), and hence obtain a
class κ ∈ H1

p (F,E(χ−1)) satisfying

resp κ = −u1Lan(χ)κnr + (1 − v1)κcyc

= u1(−Lan(χ)κnr + κcyc).
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Recall that u1 6= 0 by (88). Replacing κ by κ/u1, we obtain (100). This proves part 1 of
Theorem 2, and part 2 for the character χ. The proof of part 2 for the character χ−1 follows
from the observation that, when there is a unique prime of F above p, the roles of the matrix
entries b and c can be interchanged in Theorems 4.2 and 4.4. This produces a cohomology
class κ ∈ H1

p (F,E(χ)) satisfying

resp κ = −Lan(χ
−1)κnr + κcyc.

Theorem 2 follows.
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