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Abstract. We formulate a conjecture on slopes of overconvergent p-adic cuspforms of any
p-adic weight in the Γ0(N)-regular case. This conjecture unifies a conjecture of Buzzard on
classical slopes and more recent conjectures on slopes “at the boundary of weight space”.
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1. Introduction and statement of the conjecture

Let p be a prime number, and let N be a positive integer co-prime to p. The goal of
this article is to investigate Up-slopes: the p-adic valuations of the eigenvalues of the Up-
operator acting on spaces of (overconvergent p-adic) cuspforms of level Γ0(Np). Ultimately,
we formulate a conjecture which unifies currently disparate predictions for the behavior of
slopes at weights “in the center” and “towards the boundary” of p-adic weight space.

1.1. Slopes of cuspforms. The study of slopes of cuspforms began with extensive computer
calculations of Gouvêa and Mazur in the 1990s [15]. Theoretical advancements of Coleman
[12] led to a general theory of overconvergent p-adic cuspforms and eventually, with Mazur,
to the construction of so-called eigencurves [13]. To better understand the geometry of the
newly constructed eigencurves, Buzzard and his co-authors returned to explicit investigations
on slopes in a series of papers [5, 7, 6, 9].

In [5], Buzzard produced a combinatorial algorithm (“Buzzard’s algorithm”) that for fixed
p and N takes as input k and outputs dimSk(Γ0(N))-many integers. He also defined the
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notion of a prime p being Γ0(N)-regular and conjectured that his algorithm was computing
slopes in the regular cases.1

Definition 1.1 ([5, Definition 1.2]). An odd prime p is Γ0(N)-regular if the Hecke operator
Tp acts on Sk(Γ0(N)) with p-adic unit eigenvalues for 2 ≤ k ≤ p+ 1.

See Definition 6.1 for p = 2, but we note now that p = 2 is SL2(Z)-regular. The first prime
p which is not SL2(Z)-regular is p = 59.

Buzzard’s algorithm is concerned with spaces of cuspforms without character, where the
slopes vary in a fairly complicated way. By contrast, a theorem of Buzzard and Kilford
[9] implies that if j ≥ 3 and χ is a primitive Dirichlet character of conductor 2j then the
U2-slopes in Sk(Γ1(2j), χ) are the neatly ordered numbers 23−j · (1, 2, 3, . . . , k − 2). See also
analogous theorems of Roe [22], Kilford [17] and Kilford–McMurdy [18].

In [20], Liu, Wan and Xiao gave a conjectural, but general, framework in which to view
the Buzzard–Kilford calculation (see [25] also). Namely, those authors have conjectured that
the slopes of the Up-operator acting on spaces of overconvergent p-adic cuspforms at p-adic
weights “near the boundary of weight space” are finite unions of arithmetic progressions
whose initial terms are the slopes in explicit classical weight two spaces. They also verified
their conjecture for overconvergent forms on definite quaternion algebras.

The beautiful description of the slopes at the boundary of weight space is actually a con-
sequence (see [4, 20]) of a conjecture, widely attributed to Coleman, called “the spectral
halo”: after deleting a closed subdisc of p-adic weight space, the Coleman–Mazur eigencurve
becomes an infinite disjoint union of finite flat covers over the remaining portion of weight
space. Furthermore, families of eigenforms over outer annuli of weight space should be inter-
preted as p-adic families passing through overconvergent p-adic eigenforms in characteristic
p (see [1, 16]). The existence of a spectral halo should not depend on regularity.

In summary, for a space either of the form Sk(Γ0(Np)) or Sk(Γ0(N)∩Γ1(pr), χ), the slopes
are conjectured to be determined by a finite computation in small weights together with an
algorithm: Buzzard’s algorithm in the first case and “generate an arithmetic progression” in
the second.

In this article, we present a unifying conjecture that predicts the slopes of overconvergent
p-adic eigenforms over all of p-adic weight space simultaneously. The shape of our conjecture
is the following: we write down a power series over Zp in two variables, one of which is the
weight variable. We then conjecture, in the Γ0(N)-regular case, that the Newton polygon
of the specialization of our series to any given weight has the same set of slopes as the
Up-operator acting on the corresponding space of overconvergent p-adic cuspforms.

1.2. Fredholm series. Our approach begins with overconvergent p-adic modular forms.
Write W for the even p-adic weight space: the space of continuous characters κ : Z×p →
C×p with κ(−1) = 1. For each κ ∈ W we write S†κ(Γ0(Np)) for the space of weight κ
overconvergent p-adic cuspforms of level Γ0(Np).

An integer k gives rise to a p-adic weight z 7→ zk, and the finite-dimensional space
Sk(Γ0(Np)) sits as a Up-stable subspace of S†k(Γ0(Np)). In [11], Coleman proved that the

Up-slopes in Sk(Γ0(Np)) are almost exactly those Up-slopes in S†k(Γ0(Np)) which are at most

1Buzzard’s algorithm only outputs integers, so Buzzard’s conjecture implies that Up-slopes are always
integral in Γ0(N)-regular cases. We prove in Section 7 that Γ0(N)-regularity is a necessary condition for the
Up-slopes to always be integral.

2



k − 1. Thus, one could determine the classical slopes by attempting the seemingly more
difficult task of determining the overconvergent slopes.

Second, denote by

Pκ(t) = det
(

1− tUp
∣∣
S†κ(Γ0(Np))

)
= 1 +

∑
i≥1

ai(κ)ti ∈ Qp[[t]]

the Fredholm series for the Up-operator in weight κ. The series Pκ is entire in the variable t
and the Up-slopes in weight κ are the slopes of the segments of the Newton polygon of Pκ.
Coleman’s second theorem (see [12, Appendix I]) is that κ 7→ ai(κ) is defined by a power
series with Zp-coefficients.

To be precise, we write W =
⋃
εWε where the (disjoint) union runs over even characters

ε : (Z/2pZ)× → C×p , and κ ∈ W is in Wε if and only if the restriction of κ to the torsion
subgroup in Z×p is given by ε. We fix a topological generator γ for the procyclic group
1 + 2pZp. Each Wε is then an open p-adic unit disc with coordinate wκ = κ(γ)− 1.

The meaning of Coleman’s second result can now be clarified: for each ε there exists a two
variable series

P (ε)(w, t) = 1 +
∞∑
i=1

a
(ε)
i (w)ti ∈ Zp[[w, t]]

such that if κ ∈ Wε then Pκ(t) = P (ε)(wκ, t). In particular, the slopes of overconvergent
p-adic cuspforms are encoded in the Newton polygons of the evaluations of the P (ε) at p-adic
weights.

1.3. The ghost conjecture. Our approach to predicting slopes is to create a faithful,
explicit, model G(ε) for each Fredholm series P (ε). We begin by writing G(ε)(w, t) = 1 +∑
g

(ε)
i (w)ti for coefficients g

(ε)
i (w) which we shortly determine. If decorations are not needed,

we refer to g(w) as one of these coefficients. Each coefficient will be non-zero and not divisible
by p.2 In particular, wκ 7→ vp(g(wκ)) will depend only on the relative position of w to the
finitely many roots of g(w) in the open disc vp(w) > 0.

To motivate our specification of the zeros of g
(ε)
i (w), we make two observations:

(a) If g
(ε)
i (wκ) = 0 then the i-th and (i+ 1)-st slope of the Newton polygon of G(ε)(wκ, t)

are the same.

So, one can ask: what are the slopes that appear with multiplicity in spaces of overconvergent
p-adic cuspforms? The second observation is:

(b) If k ≥ 2 is an even integer then the slope k−2
2

is often repeated in S†k(Γ0(Np)).

In fact, any eigenform in Sk(Γ0(Np)) which is new at p has slope k−2
2

. So, in order to model

the slopes of Up it might be reasonable to insist that g
(ε)
i (w) has a zero exactly at w = wk

with k ∈ Wε where the i-th and (i + 1)-st slope of Up acting on Sk(Γ0(Np)) are both k−2
2

.

This leads us to seek g
(ε)
i such that:

(1) g
(ε)
i (wk) = 0 ⇐⇒ dimSk(Γ0(N)) < i < dimSk(Γ0(N)) + dimSk(Γ0(Np))p−new

2In [4], the authors showed that if N = 1 then the coefficients a
(ε)
i (w) are not divisible by p. For N > 1

this is not true, but we don’t believe this divisibility plays a crucial role for predicting slopes.
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for k ∈ Wε. Such a g
(ε)
i exists because for fixed i, the right-hand side of (1) holds for at most

finitely many k.
We now need to specify the multiplicities of the zeros wk.

3 An integer k ∈ Wε is a zero

for g
(ε)
i (w) for some range of consecutive integers i = a, a+ 1, . . . , b for which the right-hand

side of (1) holds. Roughly, we set the order of vanishing of g
(ε)
a (w) and g

(ε)
b (w) at w = wk to

be 1; for g
(ε)
a+1(w) and g

(ε)
b−1(w) to be 2; and so on. More formally, define the sequence s(`) by

si(`) =

{
i if 1 ≤ i ≤ b`/2c
`+ 1− i if b`/2c < i ≤ `,

and s(`) is the empty sequence if ` ≤ 0. For d ≥ 0 we write s(`, d) for the infinite sequence

s(`, d) = (0, . . . , 0︸ ︷︷ ︸
d times

, s1(`), s2(`), . . . , s`(`), 0, . . . ).

If k is an integer then set dk := dimSk(Γ0(N)) and dnew
k := dimSk(Γ0(Np))p−new. We then

define m(k) = s(dnew
k − 1, dk), and set

g
(ε)
i (w) :=

∏
k∈Wε

(w − wk)mi(k) ∈ Zp[w] ⊂ Zp[[w]]

which we note is a finite product.

Definition 1.2. The p-adic ghost series of tame level Γ0(N) on the component Wε is

G(ε)(w, t) := 1 +
∞∑
i=1

g
(ε)
i (w)ti ∈ Zp[[w, t]].

The naming choice and the motivation for the multiplicities defined in the next paragraph
are discussed in Appendix B. We check in Proposition 2.8 that G(ε) is entire as a power series
in the variable t over Zp[[w]]. In particular, for each p-adic weight κ we get an entire series
Gκ ∈ Cp[[t]]. In what follows, we write NP(−) for “Newton polygon”.

Conjecture 1.3 (The ghost conjecture). If p is an odd Γ0(N)-regular prime or p = 2 and
N = 1, then NP(Gκ) = NP(Pκ) for each κ ∈ W.

We check below that the hypotheses on p is necessary (Theorem 2.13). In Section 6, we
formulate a conjecture when p = 2 is Γ0(N)-regular with a modified ghost series.

3The näıve idea of having all zeros of g
(ε)
i be simple would not work because the ghost series defined below

would not be an entire series (compare with Proposition 2.8).
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1.4. Evidence for the ghost conjecture.

1.4.1. Buzzard’s conjecture versus the ghost conjecture. Buzzard’s algorithm exploits many
known and conjectured properties of slopes, such as their internal symmetries in classical
subspaces, their (conjectural) local constancy in large families, and their interaction with
Coleman’s θ-operator, to recursively predict classical Up-slopes. The ghost conjecture on
the other hand, simply motivated by the properties of slopes of p-newforms, predicts all
overconvergent Up-slopes and one obtains classical slopes by keeping the first dk-many. These
two approaches are completely different and, yet, they appear to agree. We view such
agreement as compelling evidence for both conjectures.

If G(t) ∈ 1 + tCp[[t]] is a power series and d ≥ 1, then write G≤d for the truncation of G
in degree ≤ d. Write BA(k) for the output of Buzzard’s algorithm on input k.

Fact 1.4. If either

(a) N = 1 and p ≤ 4099 and 2 ≤ k ≤ 2050, or
(b) 2 ≤ N ≤ 42, 3 ≤ p ≤ 199 and 2 ≤ k ≤ 400,

then the multiset of slopes of NP(G≤dkk ) is equal to BA(k).

We note that Buzzard made an extensive numerical verification of his conjecture which
included all weights k ≤ 2048 for p = 2 and N = 1.

The careful reader will note a striking omission in the statement of Fact 1.4: the agreement
between the ghost slopes and the output of Buzzard’s algorithm does not seem to be limited
to Γ0(N)-regular cases. Namely, neither the construction of the ghost series nor Buzzard’s
algorithm requires any a priori regularity hypotheses and the tests we ran to check Fact
1.4 were not limited to regular cases. It seems possible that someone with enough patience
could even prove, without any hypothesis on p and N , that the output of Buzzard’s algorithm
agrees with the classical ghost slopes. Although neither conjecture is predicting Up-slopes
in the irregular case, the numbers they both output could be thought of as representing the
Up-slopes that “would have occurred” if not for the existence of a non-ordinary form of low
weight.

1.4.2. Comparisons with known theorems on slopes. There are a number of cases where the
slopes of NP(Pκ) have been determined. In such cases that we know of, we independently
verify that the ghost series determines the same list of slopes.

Theorem 1.5 (Theorem 3.2, Corollary 3.4, Theorem 3.5). NP(Gκ) = NP(Pκ) in the follow-
ing cases:

(a) p = 2, N = 1, κ = 0,
(b) p = 2, N = 1, v2(wκ) < 3,
(c) p = 3, N = 1, v3(wκ) < 1,
(d) p = 5, N = 1, κ of the form zkχ with χ conductor 25 and
(e) p = 7, N = 1, κ ∈ W0 ∪W2 of the form zkχ with χ conductor 49.

The determination of the Up-slopes in these cases are due to, in order, Buzzard and
Calegari [7], Buzzard and Kilford [9], Roe [22], Kilford [17] and Kilford and McMurdy [18].

We also check the ghost conjecture is consistent with a conjecture of Buzzard and Calegari
in [7] on 2-adic, tame level one, slopes at negative integers (Theorem 3.3) and we derive
formulas for the slopes of NP(G0) when p = 3, 5 and N = 1 which agree with formulas found
in Loeffler’s paper [21] (Proposition 3.6).
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1.4.3. The ghost spectral halo. Coleman’s spectral halo, mentioned above, is concerned with
p-adic weights quite far away from the integers. Specifically, let us refer to the spectral halo
as the conjecture:

Conjecture 1.6 (The spectral halo conjecture). There exists a v > 0 such that 1
vp(wκ)

NP(Pκ)

is independent of κ ∈ Wε if 0 < vp(wκ) < v.

On Wε, the constant value of 1
vp(wκ)

NP(Pκ) is then beautifully realized as the w-adic

Newton polygon NP(P ) where P is the mod p reduction of the P (ε).
The ghost series trivially satisfies this halo-like behavior. Indeed, the zeros of each coeffi-

cient g(w) lie in the region vp(wκ) ≥ 1 (or v2(wκ) ≥ 3 if p = 2). Thus, over the complement
of those regions, we have vp(g(wκ)) = λ(g)vp(wκ) where λ(g) = deg g. This proves:

Theorem 1.7 (The ghost spectral halo). The function κ 7→ 1
vp(wκ)

NP(Gκ) is independent

of κ ∈ Wε if 0 < vp(wκ) < 1 (and 0 < v2(wκ) < 3 if p = 2), and the constant value is equal

to NP(G
(ε)

).

Along with the spectral halo conjecture, one also predicts that the slopes of NP(P ) are
a finite union of arithmetic progressions for vp(wκ) small (see [20, Conjecture 1.2(3)]). We
prove this directly for the ghost series, up to finite error. Write µ0(N) for the index of Γ0(N)
inside SL2(Z).

Theorem 1.8 (Corollary 5.2, Theorem 3.2). If p is odd then the slopes of NP(G) are a

finite union of p(p−1)(p+1)µ0(N)
24

-many arithmetic progressions with a common difference (p−1)2

2
,

except for finitely many possible exceptional slopes.
If p = 2 and N = 1 then NP(G) has slopes {1, 2, 3, . . . }.

We note that Theorem 1.7 and [4] imply that if the ghost conjecture is true then the
exceptional slopes do not appear. More specifically, if the ghost conjecture is true then
Theorem 1.7 implies the spectral halo exists on 0 < vp(wκ) < 1, and if that is true then
[4, Theorem 3.10] proves that the slopes in Theorem 1.8 are a finite union of arithmetic
progressions without exceptions. Moreover, as evidence for the ghost conjecture, one can
independently verify that the number of progressions predicted by [4, Theorem 3.10] is
exactly the same number written in Theorem 1.8.4

In addition to the ghost spectral halo, we’ve also discovered interesting arithmetic prop-
erties of slopes over other regions of p-adic weight space. See Section 1.6 below (specifically
Theorem 1.12, which is a vast generalization of Theorem 1.8).

1.5. Distribution of ghost slopes. In Theorem 4.1 below we prove an asymptotic formula
for the i-th slope of NP(Gk) when k ≥ 2 is an even integer. Here we highlight two corollaries

4If Conjecture 1.6 is true with v = 1 then [4, Theorem 3.10] predicts the number of progressions with

common difference (p−1)2

2 is given by

(p− 1)c0(N)

2
+

p−3
2∑
j=0

dimS2(Γ0(N) ∩ Γ1(p2), χω−2j)

where χ is an even primitive character modulo p2, ω is the Teichmüller character and c0(N) is the number of

cusps on X0(N). One can check that this is exactly p(p−1)(p+1)µ0(N)
24 (using [10, Théorème 1] for example).
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related to conjectures of Buzzard–Gouvêa and Gouvêa on the distribution of classical slopes.
We write s1(k) ≤ s2(k) ≤ · · · for the slopes of NP(Gk).

On [14, Page 8], Gouvêa asks if vp(ap) ≤ k−1
p+1

with probability one as k → ∞ where ap
ranges over eigenvalues for Tp acting on Sk(Γ0(N)). Buzzard asks in [5, Question 4.9] if the
bound is always true when p is Γ0(N)-regular.5 We prove that the ghost slopes satisfy an
asymptotic version of the Buzzard–Gouvêa bound.

Theorem 1.9 (Corollary 4.2). For k ≥ 2 even,

sdk(k) =
k

p+ 1
+O(log k).

We believe that in fact sdk(k) ≤ k−1
p+1

always, but we did not pursue this except if p = 2.

We will not include details here.
In [14], Gouvêa also considered, for a fixed k, the set

xk :=

{
h

k − 1
: h is a slope of Tp acting on Sk(Γ0(N))

}
⊂ [0, 1].

He then conjectured that the sets xk become equidistributed on [0, 1
p+1

] as k → ∞. We

establish an analogous property for the ghost slopes. Write dk,p = dimSk(Γ0(Np)).

Theorem 1.10 (Corollary 4.3). As k →∞, the sets{
si(k)

k − 1
: 1 ≤ i ≤ dk,p

}
become equidistributed with respect to the unique probability measure on [0, 1

p+1
]∪
{

1
2

}
∪[ p

p+1
, 1]

whose mass is p−1
p+1

at 1
2

and is uniformly distributed otherwise.

The method for these investigations is to study asymptotics of the actual points underlying
the construction of the Newton polygons for the ghost series. The extra flexibility of having
a power series in hand allows one to establish results like Theorem 1.10 without the annoying
combinatorics that would underlie proving an exact Buzzard–Gouvêa bound holds.

Remark 1.11. We also explored the relationship between the ghost series and the Gouvêa–
Mazur conjecture [15, Conjecture 1]. Namely, one might ask if one sees “logarithmic-sized
ghost families” as suggested by Buzzard’s conjecture. Indeed, we do.

In the discussion of the ghost spectral halo, we observed that all the zeros of the ghost
coefficients occur at integer weights. Moreover, the set of zeros of a given coefficient is a linear
function of its index. For example, if k ≥ 2 is an integer then the zeros of the coefficients
g1(w), . . . , gdk(w) (over the component containing k) are completely contained in the list

2, 4, . . . , k − 2. In particular, if vp(wκ −wk) ≥ 1 + dlogp(k)e then vp(g
(ε)
i (wκ)) = vp(g

(ε)
i (wk))

for 1 ≤ i ≤ dk and so
κ 7→ NP(G≤dkκ )

is constant on v2(wκ − wk) ≥ 1 + dlogp(k)e. For example, S62(SL2 Z) is four-dimensional
with T2-slopes 6, 6, 14, 14 and Figure 2 illustrates these are the lowest four ghost slopes on
v2(wκ − w62) ≥ 7 = 1 + dlog2(62)e.

5Gouvêa also asks whether or not vp(ap) ≤ k−1
p+1 for all k once it is true for k ≤ p+ 1, which is a slightly

stronger question ([14, Page 9]).
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1.6. Halos and arithmetic progressions. We turn now towards one consequence of the
ghost conjecture. For κ ∈ W , let us write ακ := supw∈Zp vp(wκ − w). Since the zeros of the
ghost coefficients are all integers, it is easy to see that if κ, κ′ lie on the same component and
vp(wκ′ −wκ) > ακ, then NP(Gκ′) = NP(Gκ). In particular, if wκ /∈ Zp, then ακ is finite and
there is a small disc around wκ on which the ghost slopes are all constant.

The simplest example is to fix r ≥ 0 an integer and v a rational number r < v < r + 1.
Then κ 7→ NP(Gκ) is constant on the disc vp(wκ) = v, and the Newton polygons scale
linearly with v, forming “halos”. We’ve illustrated the halos in Figure 1 below where we’ve
plotted the first twenty slopes on vp(wκ) = v for v /∈ Z when p = 2 and N = 1. (The omitted
regions are indicated with an open circle.6) Note the picture over v2(wκ) < 3 illustrates the
result of Buzzard–Kilford [9]. Over 3 < v < 4 you see pairs of parallel lines which hints at
extra structure in the set of slopes.

1 2 3 4 5 6 7 8 9

10

20

30

40

50

60

70

80

slopes

v=v(w )

Figure 1. “Halos” for p = 2 and N = 1.

The following theorem explains this regularity. If r ≥ 0, write

Cp,N,r =
pr+1(p− 1)(p+ 1)µ0(N)

24
.

Theorem 1.12 (Theorem 5.1, Remark 5.13). Let p be odd and assume wκ /∈ Zp. Write r =
bακc. Then the slopes of NP(Gκ) form a finite union of Cp,N,r-many arithmetic progressions

6We stress that the behavior of the slopes in the omitted regions may be very complicated, interweaving
the disjoint branches that we’ve drawn.
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with the same common difference

(p− 1)2

2

(
ακ +

r∑
v=1

(p− 1)pr−v · v

)
except for finitely many possibly exceptional slopes.

If p = 2 and N = 1 then the same is true with C2,1,r = max(2r−2, 1) and common difference
αk +

∑r
v=3 2r−v · v.

The condition bακc = 0 is equivalent to 0 < vp(wκ) < 1 in which case ακ = vp(wκ). Thus,
Theorem 1.12 generalizes Theorem 1.8.

Note that Theorem 1.12 applies to p-adic annuli r < vp(wκ −wk0) < r + 1 for any integer
k0, and κ 7→ NP(Gκ) is constant on each fixed radius vp(wκ − wk0) = v ∈ (r, r + 1). Thus
the halo behavior is stable under re-centering the coordinate w at any integral weight. We
illustrate this in Figure 2 below, showing the halos near the weight w = w62 when p = 2 and
N = 1. (The interested reader may want to compare Figure 2 to the discussion in the last
paragraph of [5, Section 3].)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10

20

30

40

50

60

slopes

v=v(w −w62)

Figure 2. “Halos” centered at the weight w = w62 when p = 2 and N = 1.

There are several interesting observations regarding Figure 2. First, if v2(wκ − w62) > 3
then v2(wκ) = 3, so the picture in Figure 2 is nearly completely contained within the omitted
regions in Figure 1 over v2(wκ) = 3. Second, we’ve drawn some lines in Figure 2 thicker than
others: the thickness of a line corresponds to the multiplicity of a slope. On v2(wκ−w62) > 6,
we see a double slope 6; on v2(wκ − w62) > 7, we see two 14s; and so on. Compare with the
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example at the end of Remark 1.11. Next, the thickest line is six slope 30 families: these
should correspond under the ghost conjecture to six families of p-adic eigenforms converging
to the six newforms of weight 62 (which have slope 62−2

2
= 30). Finally, the lone family at the

top of Figure 2 is a slope 61 family which should be thought of under the ghost conjecture
as converging to the critical slope Eisenstein series of weight 62.

If the ghost conjecture is true, there are halos for Up-slopes, and the slopes of NP(Pκ)
satisfy Theorem 1.12. Over the annulus 0 < vp(wκ) < 1, one can observe this empirically by
computing classical spaces of cuspforms of weight with character of large p-power conductor.
However, everything is much more mysterious over a p-adic annulus r < vp(wκ) < r+ 1 once
r ≥ 1: there are no locally algebraic weights in that region and thus no classical spaces of
cuspforms.

1.7. Irregular cases. The basic heuristic in the ghost series construction is that the zeros
of the coefficients of Fredholm series give rise to repeated slopes and that newforms provide
many repeated slopes. In Section 7 below we show that non-integral, and thus repeated,
slopes always appear when p is an odd Γ0(N)-irregular prime. One could hope that careful
predictions of where these fractional slopes appear could lead to a modification of the ghost
series which would work in any case.

We examined carefully the case where p = 59 and N = 1 and came up with a way to
modify infinitely many, relatively sparse, coefficients by adding a new zero. We tested our
modified ghost series against the U59-slopes for weights k ≤ 1156 and they matched perfectly.
However, computing actual slopes is computationally difficult and we feel we do not have
enough data to support an actual conjecture.7

The precise indices where the zeros are added and the precise zeros which are added are
determined by the list of slopes in weight two spaces with character of conductor p = 59
(some of these are fractional; see Theorem 7.3). It would be interesting to have a modification
which works for general p and N (after computing this finite amount of data). Moreover,
such a modification would hopefully be regular enough and sparse enough so that the results
of Sections 4 and 5 will go through in the general case.

1.8. Organization. Section 2 is concerned with explicitly determining information about
the ghost series, including proving that it is entire in the variable t. However, the reader
may want to skip directly to Section 3 where we give more precise information when p = 2
and N = 1. This section also contains the bulk of the numerical evidence for the ghost
conjecture. Sections 4 deals with asymptotics of ghost slopes. It relies heavily on Section
2. The same is true for Section 5, where we describe the halos and discuss the arithmetic
properties of ghost slopes. Section 6 contains a modification of the ghost series when p = 2.
The main theme is dealing with fractional slopes that appear in certain spaces. This theme
continues in Section 7 where we discuss Γ0(N)-regularity and fractional slopes.

1.9. Conventions. We maintain all the notations presented in the introduction. We also
make the following conventions.

If P (t) = 1 +
∑
ait

i ∈ Cp[[t]] is an entire series then we write NP(P ) for its Newton
polygon, which is the lower convex hull of the set of points {(i, vp(ai)) : ai 6= 0}. The slopes
of P are the slopes of NP(P ). The ∆-slopes of P are the differences vp(ai) − vp(ai−1) for

7And, we cannot compare to Buzzard’s algorithm since it doesn’t compute slopes in irregular cases.
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i = 1, 2, . . . with ai, ai−1 6= 0, i.e. the slopes of the line segment connecting consecutive
points before taking the Newton polygon. When P is the Fredholm series for Up we will use
Up-slopes and when P is the ghost series we will say ghost slopes and ghost ∆-slopes.

If f(x), g(x) and h(x) are real-valued functions of a variable x = (x1, . . . , xn) ∈ Rn then
we write

f(x) = g(x) +O(h(x))

to mean that there exists an M ≥ 0 and a constant A > 0 such that |f(x)− g(x)| ≤ A |h(x)|
whenever ‖x‖ ≥ M (where ‖−‖ is the standard norm on Rn). If h1(x1), . . . , hn(xn) are n
functions on a single variable then we write f(x) = g(x) + O(h1(x1), . . . , hn(xn)) to mean
the above with h(x) := supi h(xi).

Acknowledgements. We thank Kevin Buzzard and Liang Xiao for helpful discussions.
The first author was supported by NSF grant DMS-1402005 and the second author was
supported by NSF grant DMS-1303302.

2. Explicit analysis of the ghost series

We fix a prime p, a tame level N , and an even Dirichlet character ε of conductor p. We

write gi = g
(ε)
i for the coefficients of the p-adic ghost series G(w, t) = G(ε)(w, t) of tame level

N over the component Wε. We have two goals in this section. First, we will prove that
G(w, t) is entire over Zp[[w]] (see Proposition 2.8). Second, we will show that if the ghost
conjecture is true then either p is an odd Γ0(N)-regular prime or p = 2 and N = 1 (see
Theorem 2.13).

We begin by recalling that if k ∈ Wε then

(2) gi(wk) = 0 ⇐⇒ dk < i < dk + dnew
k .

Throughout this section, we also refer to the integer k as the zero of gi when we truthfully
mean the coordinate wk.

Lemma 2.1. If N > 1 or p > 3, then the zeros of gi are integers k which form a finite
arithmetic progression with common difference p− 1, if p is odd, and 2 if p is even.

Proof. By (2) it suffices to show that

dk < i < dk + dnew
k =⇒ one of

{
dk+ϕ(2p) < i < dk+ϕ(2p) + dnew

k+ϕ(2p)

i ≤ dk+ϕ(2p).

But if N > 1 or p > 3 then dk ≤ dk+ϕ(2p) and dnew
k ≤ dnew

k+ϕ(2p) (Lemma A.2). Thus if the first
possibility fails, it must be due to the lower inequality, which is what we wanted to show. �

Remark 2.2. Lemma 2.1 only misses N = 1 and p = 2, 3. When N = 1 and p = 2, the zeros
of gi are

6i+ 8, 6i+ 10, . . . , 12i− 4, 12i− 2, 12i+ 2,

and thus are just missing the single term 12i in an arithmetic progression. Similarly, for
N = 1 and p = 3, the zeros of gi are

4i+ 6, 4i+ 8, . . . , 12i− 4, 12i− 2, 12i+ 2.

(See Proposition 3.1 and Table 1.)
11



For each coefficient g, write HZ(g) (resp. LZ(g)) for the highest (resp. lowest) k such that
wk is a zero of g. The following proposition describes these highest and lowest zeros up to
constants bounded independent of i.

Proposition 2.3. As functions of i,

HZ(gi) =
12i

µ0(N)
+O(1) and LZ(gi) =

12i

µ0(N)p
+O(1)

Proof. By standard dimension formulas (see Appendix A), we have that dk = kµ0(N)
12

+O(1)

and dnew
k = kµ0(N)(p−1)

12
+O(1). Thus, the largest k satisfying dk < i equals 12i

µ0(N)
+O(1), and

the smallest k satisfying i < dk + dnew
k is 12i

µ0(N)p
+ O(1). The proposition follows from the

definition (2). �

We also explicitly describe how the zeros of the coefficients and their multiplicities change
as we increase indices. Write ∆i(w) = gi(w)/gi−1(w). The definition of the multiplicity
patterns mi(−) in Section 1.3 implies that ∆i has only simple zeros and poles at some finite
set of w = wk. More specifically, if k ∈ Wε then

(3) ∆i(wk) = 0 ⇐⇒ mi(k) = mi−1(k) + 1 ⇐⇒ dk + 1 ≤ i ≤ dk +

⌊
dnew
k

2

⌋
and

(4) ∆i(wk) =∞ ⇐⇒ mi(k) = mi−1(k)− 1 ⇐⇒ dk +

⌊
dnew
k − 1

2

⌋
+ 2 ≤ i ≤ dk + dnew

k .

For notation, we will always write ∆i = ∆+
i /∆

−
i in lowest common terms. Thus ∆±i ∈ Z[w]

and the zeros are of the form wk with k ∈ Z. We write HZ(∆±i ) and LZ(∆±i ) for the highest
and lowest zeros as with gi above.

Proposition 2.4.

(a) The zeros of ∆−i form an arithmetic progression with common difference p− 1 if p is
odd and 2 if p = 2. The same is true for the zeros of ∆+

i unless N = 1 and p = 2, 3.

(b) HZ(∆+
i ) =

12i

µ0(N)
+O(1) and LZ(∆+

i ) =
24i

µ0(N)(p+ 1)
+O(1).

(c) HZ(∆−i ) =
24i

µ0(N)(p+ 1)
+O(1) and LZ(∆−i ) =

12i

µ0(N)p
+O(1).

Proof. Part (a) follows from (3) and (4) together with Lemma A.2 (as in the proof of Lemma
2.1). Parts (b) and (c) follow similarly as in the proof of Proposition 2.3. �

Remark 2.5. In Proposition 3.1 and Table 1, we give formulas making the above O(1)-terms
precise when N = 1 and p = 2, 3, 5, and 7. The qualification for p = 2, 3 and N = 1 will be
inconsequential as we move forward (see the proofs of Lemma 2.6 and Proposition 4.8, for
example).

For a non-zero element ∆ ∈ Zp[[w]], we write λ(∆) for the number of zeros of ∆ in the
open disc vp(w) > 0. We extend this to the field of fractions in the obvious way.

Lemma 2.6. If p > 2 then

(a) λ(∆+
i ) =

12i

µ0(N)(p+ 1)
+O(1) and

12



(b) λ(∆−i ) =
12i

µ0(N)p(p+ 1)
+O(1).

For p = 2, the same formulas hold if we replace the 12 by a 6.

Proof. For p > 2, the number of zeros of ∆+
i equals

HZ(∆+
i )− LZ(∆+

i )

p− 1
+ 1 =

1

p− 1

(
12i

µ0(N)
− 24i

µ0(N)(p+ 1)

)
+O(1) =

12i

µ0(N)(p+ 1)
+O(1)

by Proposition 2.4(a,b).8 The zeros of ∆−i and p = 2 is done similarly. �

Remark 2.7. The difference λ(∆i) = λ(∆+
i ) − λ(∆−i ) equals the i-th ∆-slope of the mod p

reduction G(w, t) ∈ Fp[[w, t]] (with the w-adic valuation on Fp[[w]]). By Lemma 2.6, the

i-th ∆-slope equals 12i(p−1)
µ0(N)p(p+1)

up to a bounded constant. We return to this in Section 5.

Recall that if R is a local ring with maximal ideal m and F (t) =
∑
rit

i ∈ R[[t]] then F
is called entire if there exists a sequence of integers ci such that ri ∈ mci and ci/i → ∞.
If R = Zp[[w]] and G(w, t) ∈ Zp[[w, t]] is entire over Zp[[w]] then the specialized series
G(w′, t) ∈ Cp[[t]] is entire in the usual sense for all w′ ∈ Cp with vp(w

′) > 0 (see [13, Section
1.3]).

Proposition 2.8. The ghost series G(ε)(w, t) is entire series over Zp[[w]]. In particular, if
κ ∈ W then Gκ(t) is an entire series.

Proof. Every root wk of gi lies in pZp, and so gi ∈ (p, w)λ(gi). We claim λ(gi)/i → ∞ as
i→∞. To show the claim, it is enough to show

(5) lim inf
i

(λ(gi)− λ(gi−1)) =∞.

But λ(gi)−λ(gi−1) = λ(∆i), so (5) follows from Lemma 2.6 and the remark following it. �

We now turn to showing that for the ghost conjecture to be true, either p = 2 and N = 1
or p is an odd Γ0(N)-regular prime. In addition to our running notation dk and dnew

k , we
now also write dord

k for the dimension of the p-ordinary subspace of Sk(Γ0(Np)). Hida theory
implies that dord

k depends only on the component Wε containing k. If κ ∈ W , write dord
Gκ

for
the multiplicity of the slope zero in NP(Gκ). We leave the following proof to the reader.
(The supremums are finite by Proposition 2.3.)

Lemma 2.9 (Ghost Hida theory). The function κ 7→ dord
Gκ

is constant on connected compo-
nents of W. Specifically, if κ ∈ Wε then

dord
Gκ = sup

{
i : g

(ε)
i (w) = 1

}
= sup {i : mi(k) = 0 for all k ∈ Wε}

≥ min {dk : k ≥ 2 and k ∈ Wε} .

Lemma 2.10. Let p 6= 2.

(a) If 4 ≤ k ≤ p− 1 is an even integer then dord
Gk
≥ dk.

(b) dord
G2
≥ d2 + dnew

2 = d2+(p−1).

8The O(1) term absorbs the qualification that Proposition 2.4 isn’t quite true if p = 2, 3 and N = 1.
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Proof. First assume that 4 ≤ k ≤ p− 1 (so p > 3). By Lemma A.2, n 7→ dk+n(p−1) is weakly
increasing with respect to n ≥ 0, so Lemma 2.9 proves dk = minn dk+n(p−1) ≤ dord

Gk
.

For part (b), Lemma A.3 implies that d2 + dnew
2 = d2+(p−1). If p = 3 and N = 1 then

d2+(p−1) = dimS4(SL2 Z) = 0, so (b) is trivial. If p > 3 or N > 1 then Lemma A.2 applies
and d2 + dnew

2 = d2+(p−1) = minn≥1 d2+n(p−1). So, the coefficient gi at index i = d2+(p−1) is
trivial, showing dord

G2
≥ d2+(p−1) by Lemma 2.9. �

Remark 2.11. When p is odd, Lemma 2.10(b) implies that one could remove w2 as a root
of any of the coefficients of the ghost series. We actually do that in Section 5 below (see
Lemma 5.5).

Lemma 2.12. If p = 2 then d4 ≤ dord
G2

.

Proof. By Lemma 2.9 it suffices to show that gd4 = 1. Since d4 ≤ d2m for all m ≥ 2 (Lemma
A.2 if N > 1 and trivial if N = 1), the only possible zero for gd4 is w = w2. But by Lemma
A.4, d2 + dnew

2 ≤ d4 and so the last index where w2 is possibly a zero is strictly less than
d4. �

Theorem 2.13. Suppose the ghost conjecture is true.

(a) If p is odd then p is Γ0(N)-regular.
(b) If p = 2 then N = 1.

Proof. Let p be odd and assume the ghost conjecture is true. To show that p is Γ0(N)-regular
we need to show that dord

k = dk for k = 4, . . . , p+ 1, and we have dord
k ≤ dk in general. Since

we are assuming the ghost conjecture we have dord
Gk

= dord
k and thus Lemma 2.10 implies

dk ≤ dord
Gk

= dord
k ≤ dk. Thus we get equality throughout, proving (a).

Now let p = 2, and assume the ghost conjecture is true. First suppose that N 6= 1, 3, 7 and
we will get a contradiction. If N 6= 1, 3, 7 then Lemma A.4 implies that d4 > d2 +dnew

2 ≥ dord
4

(the final inequality by Hida theory). But if the ghost conjecture is true then Lemma 2.12
implies dord

4 = dord
G2
≥ d4, which is a contradiction. To finish the theorem, we show in Example

2.14 below that the ghost conjecture is false when p = 2 and N = 3, 7. �

Example 2.14. Let N = 3. Then the 2-adic ghost series begins

G(w, t) = 1 + t+ (w − w8)t2 + (w − w8)(w − w10)t3 + · · ·
so if the the ghost conjecture is true then there is at least one ordinary form appearing in
S4(Γ0(3)). This is absurd since S4(Γ0(3)) is a zero-dimensional vector space.

Similarly, if N = 7 then the 2-adic ghost series begins

G(w, t) = 1 + t+ (w − w4)t2 + t3 + · · ·
and so the ghost conjecture would imply that there exists a least three ordinary forms
appearing in S4(Γ0(7)), which is only a one-dimensional space.

Remark 2.15. In Example 2.14, the number of ordinary forms predicted by the ghost series
doesn’t even match the correct dimension of a weight four space. When p = 2 and N = 23
the ghost conjecture is false, but for more subtle reasons: here the ghost series begins

G(w, t) = 1 + t+ t2 + t3 + t4 + t5 + (w − w6)t6 + · · ·
and there are no more trivial terms up to t20 at least. One could even prove dord

G4
= 5 and

in this case S4(Γ0(23)) happens to be five-dimensional. But, the slopes of U2 acting on
S4(Γ0(23)) are {0, 0, 0, 1, 1} and so there are actually only three ordinary forms.
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3. Comparison with known or conjectured lists of slopes

This section is devoted to proving the ghost conjecture is true in every case mentioned
in Theorem 1.5 (where the Up-slopes have been previously determined). We do this by
determining the ghost slopes in each case. We also prove that the ghost conjecture implies
a conjecture of Buzzard and Calegari on slopes of overconvergent 2-adic cuspforms, and we
derive formulas for the ghost slopes at the weight κ = 0 for p = 3, 5 and N = 1.

We focus first on p = 2. So, until after the proof of Theorem 3.3 below, we write G(w, t) =
1 +

∑
gi(w)ti ∈ Z2[[w, t]] for the 2-adic tame level 1 ghost series. The reader may freely

check the first four terms are:

(6) G(w, t) = 1 + (w − w14)t+ (w − w20)(w − w22)(w − w26)t2+

(w − w26)(w − w28)(w − w30)(w − w32)(w − w34)(w − w38)t3 + · · ·
Recall we write ∆i = gi/gi−1 and in lowest terms ∆i = ∆+

i /∆
−
i .

Proposition 3.1. Let p = 2 and N = 1.

(a) gi(wk) = 0 if and only if k is an even integer among {6i+ 8, . . . 12i− 2} ∪ {12i+ 2}.
(b) If i ≥ 1 then:

(i) The zeros of ∆+
i are wk where k = 8i+ 4, . . . , 12i− 2, 12i+ 2 is even.

(ii) The zeros of ∆−i are wk where k = 6i+ 2, . . . , 8i− 2 is even.

Proof. We check (a), leaving the remainder to the reader. First note that d2 = dnew
2 = 0 so

w2 does not occur as a zero. Further, if k ≥ 4 is an even integer then dk+12 = dk + 1 and
dnew
k+12 = dnew

k + 1 (as follows easily from Appendix A). By (2), part (a) follows from:

Claim. If i ≥ 1 then for all even k ≥ 4,

dk + 1 ≤ i ⇐⇒ k ≤ 12i+ 2 and k 6= 12i, and(7)

i ≤ dk + dnew
k − 1 ⇐⇒ 6i+ 8 ≤ k.(8)

To prove (7) and (8), we work inductively. Namely, if the inequalities on either side of (7)
are true for (i, k) then they are also true (i+ 1, k + 12) and the if inequalities on either side
of (8) are true for (i, k) then they are also true for (i + 2, k + 12). By induction on i, it is
enough to prove the claim for i = 1, 2, which is done by examination of (6). �

Theorem 3.2. Let p = 2 and N = 1.

(a) If i ≥ 0 then λ(gi) =
(
i+1

2

)
.

(b) If v2(wκ) < 3 then the slopes of NP(Gκ) are {j · v2(wκ) : j ≥ 1} and NP(Gκ) =
NP(Pκ).

Proof. We first prove part (a). The case of i = 0 is trivial since g0(w) = 1. If i ≥ 1 then
Proposition 3.1(b) implies that

λ(gi) = λ(gi−1) + # {even 8i+ 4, . . . , 12i− 2, 12i+ 2} −# {even 6i+ 2, . . . , 8i− 2}
= λ(gi−1) + (2i− 1)− (i− 1) = λ(gi−1) + i.

Thus, λ(gi) =
(
i+1

2

)
by induction. It follows from the ghost spectral halo (Theorem 1.7) and

part (a) that if v2(wκ) < 3 then NP(Gκ) is equal to the lower convex hull of the set of points
(i,
(
i+1

2

)
v2(wκ)), whose slopes are easily checked to be v2(wκ), 2v2(wκ), . . . . This is precisely

the list of Up-slopes on v2(wκ) < 3 computed by Buzzard and Kilford in [9, Theorem B]. �
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Let’s now compare the 2-adic ghost series with actual Fredholm series at negative even
integers (following Buzzard and Calegari [7]).

Theorem 3.3. Let p = 2 and N = 1. If k ≤ 0 is an even integer and i ≥ 1 then

v2(gi(wk)) = v2

(
i∏

j=1

22j (−k + 12j + 2)!(−k + 6j)!

(−k + 8j + 2)!(−k + 8j − 2)!(−k + 12j)

)
In particular, the slopes of NP(Gk) agree with the slopes predicted by Buzzard and Calegari
in [7, Conjecture 2].

Since Buzzard and Calegari proved their conjecture for k = 0 ([7, Theorem 1]) we deduce:

Corollary 3.4. If p = 2 and N = 1 then NP(G0) = NP(P0).

Proof of Theorem 3.3. Note that if k ≤ 0 then gi(wk) 6= 0 for all i ≥ 0 and thus ∆i(wk) is
well-defined. By induction on i ≥ 1, it suffices to show that if k ≤ 0 is an even integer then

(9) v2 (∆i(wk)) = v2

(
22i (−k + 12i+ 2)!(−k + 6i)!

(−k + 8i+ 2)!(−k + 8i− 2)!(−k + 12i)

)
.

To this end, Proposition 3.1(b) implies

v2 (∆i(wk)) = v2

(
(wk − w8i+4) · · · (wk − w12i−2)(wk − w12i+2)

(wk − w6i+2) · · · (wk − w8i−2)

)
.

The · · · indicate running over only even integers. Since v2(wk − wk′) = 2 + v2(k − k′),

v2 (∆i(wk)) = v2

(
22i (k − (8i+ 4)) · · · (k − (12i− 2))(k − (12i+ 2))

(k − (6i+ 2)) · · · (k − (8i− 2))

)
= v2

(
22i (−k + 12i+ 2)!(−k + 6i)!

(−k + 8i+ 2)!(−k + 8i− 2)!(−k + 12i)

)
.

as desired. �

We now release our restriction to p = 2 and N = 1. Analogs of Proposition 3.1 may be
carried out for other values of p and N . In Table 1 below, we list the outcome for p = 3, 5, 7
and tame level N = 1, on the weight component corresponding to k ≡ 0 mod p − 1. With
the details from Table 1 available, it is easy to compute the ghost w-adic ∆-slopes (see Table
2 — we’ve added a few more cases there as well).

Table 1. Explicit determination of zeros of ∆±i for the p-adic tame level
1 ghost series G(w, t) = 1 +

∑
gi(w)ti on the component of weights k ≡

0 mod p− 1 for p = 3, 5, 7.

p 3 5 7

HZ(∆+
i ) 12i+ 2 12i− 4 12i− 6

LZ(∆+
i ) 6i+ 4 4i+ 4 6b i

2
c

HZ(∆−i ) 6i− 2 4i− 4 6b (i−1)
2
c

LZ(∆−i ) 4i+ 2 4b3i
5
c+ 4 6b2i

7
c+ 6
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Table 2. Differences of consecutive λ-invariants.

p 3 5 5 7 7 7

Weight component 0 mod 2 0 mod 4 2 mod 4 0 mod 6 2 mod 6 4 mod 6

λ(gi)− λ(gi−1) 2i b8i
5
c b (8i+4)

4
c b9i

7
c b (9i+6)

7
c b (9i+3)

7
c

Theorem 3.5. Suppose that N = 1 and that G(w, t) = 1 +
∑
gi(w)ti is the ghost series on

a component to be determined. Then, NP(Gκ) = NP(Pκ) if:

(a) If p = 3 and vp(wκ) < 1.
(b) If p = 5 and κ = zkχ where χ is a primitive modulo 25 and χ(−1) = (−1)k.
(c) If p = 7 and κ = zkχ ∈ W0 ∪W2 and χ is primitive modulo 49.

Proof. The ghost w-adic ∆-slopes in Table 2 are always weakly increasing. So, for p = 3, 5, 7
and κ ∈ W with vp(wκ) < 1, Theorem 1.7 implies that the slopes on NP(Gκ) are given by
{(λ(gi)− λ(gi−1)) · vp(wκ) : i = 1, 2, . . . }. The proof is then complete from Table 2 once we
verify these are the slopes of NP(Pκ) in cases (a), (b) and (c).

The case (a) is the main result of Roe’s paper [22]. The case (b) is due to Kilford [17].
The case (c) was computed by Kilford and McMurdy in [18].9 �

One may also generalize Theorem 3.3. In Table 3 below, for p = 3 and p = 5, we give
expressions that allows us to compute the Newton polygon of the ghost series at negative
even integers as the Newton polygon of a series whose coefficients are rational functions
involving simple factorials when p = 3 and p = 5.

Table 3. Buzzard–Calegari-type expressions for NP(Gk) at negative integers
k ≡ 0 mod p− 1 when p = 3 and p = 5.

p Qj(k) such that vp(gi(wk)) = v2

(∏i
j=1Qj(k)

)
3

32j(−k/2 + 6j + 1)!(−k/2 + 2j)!

(−k/2 + 3j + 1)!(−k/2 + 3j − 1)!(−k/2 + 6j)

5
5b8j/5c(−k/4 + 3j − 1)!(−k/4 + b3j/5c)!

(−k/4 + j)!(−k/4 + j − 1)!

From Table 3 we can determine the slopes of the ghost series at κ = 0 for p = 3, 5. The
expressions we derive agree with those conjectured in Loeffler’s paper [21, Conjecture 3.1].

Proposition 3.6. The Newton polygon NP(G0) for p = 3, 5 has slopes2i+ 2v3

(
(2i)!
i!

)
if p = 3;

i+ 2v5

(
(3i)!
i!

)
if p = 5.

9In comparing our statement to [17, 18], one is forced to unwind the various choices made in those papers
regarding embeddings of cyclotomic fields into Cp. Doing it carefully, one sees that [18] does not contain
any result regarding the component of weights k ≡ 4 mod 6 when p = 7.
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Proof. The sequences given are increasing with respect to i. If we show they agree with the
∆-slopes of G0 then we will be done. The proof is similar in either case, so we just deal with
the case p = 5. By Table 3 we have

(10) v2(∆i(w0)) = v5

(
5b8i/5c(3i− 1)!(b3i/5c)!

(i)!(i− 1)!

)
= i+ v5

(
5b3i/5c(3i− 1)!(b3i/5c)!

(i)!(i− 1)!

)
But for any integer n ≥ 1 and prime p we have vp(bn/pc!) = vp(n!)− bn/pc. Thus

(11) v5

(
5b3i/5c(3i− 1)!(b3i/5c)!

(i)!(i− 1)!

)
= v5

(
(3i− 1)!(3i)!

(i)!(i− 1)!

)
= v5

(
(3i)!2

(i)!2

)
.

Combining (10) and (11), we deduce our claim. �

Remark 3.7. For p = 7 and N = 1 the i-th slope of NP(G0) is

i+ v7

(
(2i)!(2i− 1)!

bi/2c!b(i− 1)/2c!

)
= i+ 2v7

(
(2i)!

b(i− 1)/2c!

)
− v7(i)−

{
1 if i ≡ 0 mod 14

0 otherwise.

(compare with the comments of Loeffler in the final paragraph prior to Section 4 of [21]).

4. Distributions of slopes

For a fixed integer k we write s1(k) ≤ s2(k) ≤ · · · for the slopes of NP(Gk). Recall our
conventions for O-notation (Section 1.9). Throughout this section, functions of i and k are
restricted to i ≥ 1 and k ≥ 2. The main theorem of this section is:

Theorem 4.1.

si(k) =


12i

µ0(N)(p+ 1)
+O(log(k), log(i)) if i ≤ dk or i > dk + dnew

k ,

k

2
+O(log(k)) dk < i ≤ dk + dnew

k .

Before beginning the proof of Theorem 4.1, we state two corollaries (Theorems 1.9 and
1.10 from the introduction).

Corollary 4.2. sdk(k) =
k

p+ 1
+O(log(k)).

Proof. Note that dk =
kµ0(N)

12
+O(1) and take i = dk in Theorem 4.1. �

Recall that dk,p := dimSk(Γ0(Np)). Then, consider the set

xk =

{
si(k)

k − 1
: 1 ≤ i ≤ dk,p

}
⊆ [0,∞).

Let µ
(p)
k be the probability measure on [0,∞) uniformly supported on xk. We refer to [23,

Sections 1.1–1.2] for the notion of weak convergence and its relationship to equidistribution.

Corollary 4.3. As k →∞, the measures µ
(p)
k weakly converge to a probability measure µ(p)

on [0, 1] which is supported on [0, 1
p+1

] ∪ {1
2
} ∪ [ p

p+1
, 1]. Explicitly, µ(p)(

{
1
2

}
) = p−1

p+1
and the

remaining mass is uniformly distributed over [0, 1
p+1

] ∪ [ p
p+1

, 1].
18



Proof. This is clear from Theorem 4.1 and the asymptotics for dk, d
new
k and dk,p (for example,

see the proof of Proposition 2.3 for dk and dnew
k ; an asymptotic for dk,p is easily obtained

from those two). �

Remark 4.4. The measures µ
(p)
k clearly depend on N , even if N is suppressed from our

notation. However, it is interesting that the limit µ(p) does not.

Remark 4.5. The key point in the proof of Theorem 4.1 is the analysis in Proposition 4.8
below. If one could prove an analog of Proposition 4.8 for the Fredholm series of Up then
the proof of Theorem 4.1 would go through as written.

The rest of this section is devoted to proving Theorem 4.1. Our strategy is to prove an
analoge of Theorem 4.1 for ghost ∆-slopes first and, from this, make conclusions about ghost
slopes. We will need two short lemmas.

Lemma 4.6. Suppose that y, λ > 0 are integers and p is a prime number. Then

vp(λ!) ≤
λ−1∑
i=0

vp(y + i) ≤ vp((λ− 1)!) + blogp(y + λ)c+ min(vp(y), vp(λ)).

Proof. Write

s(y) =
λ−1∑
i=0

vp(y + i) = vp

((
y + λ− 1

λ

)
λ!

)
.

Since binomial coefficients are integers we immediately get the lower bound vp(λ!) ≤ s(y).
On the other hand, we can also write(

y + λ− 1

λ

)
λ! =

(y + λ− 1)!

(y − 1)!(λ− 1)!
(λ− 1)!,

so for the upper bound it suffices to see

(12) vp

(
(y + λ− 1)!

(y − 1)!(λ− 1)!

)
≤ blogp(y + λ)c+ min(vp(y), vp(λ)).

Since (12) is symmetric in λ and y, we may assume that vp(y) ≤ vp(λ). In that case, the
classical estimate vp

((
n
k

))
≤ blogp(n+ 1)c yields

vp

(
(y + λ− 1)!

(y − 1)!(λ− 1)!

)
= vp(y) + vp

((
y + λ− 1

y

))
≤ vp(y) + blogp(y + λ)c.

This completes the proof. �

Now set δ be the size of the torsion subgroup in Z×p . Thus δ = p− 1 if p is odd and δ = 2
if p = 2. If k0 ∈ Z, λ > 0 and p is a prime then we define

Pk0,λ(w) = (w − wk0)(w − wk0−δ) · · · (w − wk0−(λ−1)δ).

Thus Pk0,λ ∈ Z[w] has λ-many zeros, the highest zero is k0, and the zeros are an arithmetic
progression of difference p− 1 if p is odd and 2 if p is even (compare with Proposition 2.4).
Write q = p if p is odd and q = 4 if p = 2

19



Lemma 4.7. Assume that k ≡ k0 mod δ and Pk0,λ(wk) 6= 0. Then

vp(Pk0,λ(wk)) =
qλ

p− 1
+O(log λ, log |k − k0|))

Proof. For any k, k′ we have vp(wk − wk′) = vp(2p) + vp(k − k′). Since Pk0,λ(wk) 6= 0 and
k ≡ k0 mod δ we have either k < k0 − (λ− 1)δ or k0 < k. Thus we deduce that

(13) vp(Pk0,λ(wk)) = vp(2p)λ+
λ−1∑
i=0

vp(x+ iδ)

where x = k − k0 or x = k0 − (λ − 1)δ − k depending on which choice makes x > 0. Note
that x ≡ 0 mod δ. So, replacing x by y = x/δ, (13) becomes

(14) vp(Pk0,λ(wk)) = ϑλ+
λ−1∑
i=0

vp(y + i)

where ϑ = 1 if p is odd and ϑ = 3 otherwise.
By (14) and Lemma 4.6 we see

(15) ϑλ+ vp(λ!) ≤ vp(Pk0,λ(wk)) ≤ ϑλ+ vp((λ− 1)!) + blogp(y + λ)c+ min(vp(y), vp(λ)).

On the left-hand side of (15) we have

ϑλ+ vp(λ!) ≥ (ϑ(p− 1) + 1)λ

p− 1
− dlogp(λ)e =

qλ

p− 1
− dlogp(λ)e,

and on the right-hand side (15) we have

ϑλ+ vp((λ− 1)!) ≤ ϑλ+
λ− 1

p− 1
≤ qλ

p− 1
.

(Here we’ve used the classical formula of Legendre for vp(n!).) By (15) we get

−dlogp(λ)e ≤ vp(Pk0,λ(wk))−
qλ

p− 1
≤ blogp(y + λ)c+ min(vp(y), vp(λ)).

Since y = |k − k0|+O(λ) (and logp x = O(log x)), we’re finished. �

Now fixWε and write G(w, t) = 1+
∑
gi(w)ti for the ghost series overWε. We assume all

weights k are in Wε in what follows. Recall that ∆i = gi/gi−1, and if ∆i(wk) is well-defined
then vp(∆i(wk)) is the i-th ∆-slope in weight k. We define

∆∗i (wk) :=


(w − wk)∆i(wk) if ∆i has a pole at wk,
∆i(wk)

w − wk
if ∆i has a zero at wk,

∆i(wk) otherwise.

Since ∆i only has simple zeros or poles, ∆∗i has no zeros or poles.

Proposition 4.8. We have

vp (∆∗i (wk)) =
12i

µ0(N)(p+ 1)
+O(log k, log i)
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Proof. Recall our standard practice of writing ∆i = ∆+
i /∆

−
i in lowest terms. Write λ+

i for
the number of zeros of ∆+

i and λ−i for the number of zeros of ∆−i . Write k+
i = HZ(∆+

i ) and
k−i = HZ(∆−i ). We note it suffices to prove the result separately for pairs (i, k) ranging over
a finite number of disjoint domains. With this in mind, we will focus only on the pairs (i, k)
such that wk is a zero of ∆+

i and leave the other possible pairs for the reader. We will also
assume that p > 3 or N > 1 for simplicity.10

By (3), if ∆+
i (wk) = 0 then k = O(i) and thus our goal is to show that

vp(∆
∗
i (wk)) =

12i

µ0(N)(p+ 1)
+O(log i).

By Proposition 2.4(a), using that either p > 3 or N > 1, we have

∆+
i (wk) = Pk+i ,λ′(wk) · (w − wk) · Pk−δ,λ′′(wk)

where λ′ + λ′′ = λ+ − 1. So, by definition of ∆∗i we have

vp (∆∗i (wk)) = vp

(
Pk+i ,λ′(wk)

)
+ vp (Pk−δ,λ′′(wk))− vp

(
Pk−i ,λ−(wk)

)
and k ≡ k±i mod δ. Next, by Proposition 2.4(b,c) we have k+

i = O(i) and k−i = O(i); by
Lemma 2.6 we have λ+ = O(i) and λ− = O(i). Since k = O(i) as well, Lemma 4.7 implies

vp(∆
∗
i (wk)) =

q

p− 1
(λ′ + λ′′ − λ−) +O(log i) =

q

p− 1
(λ+ − λ−) +O(log i).

Finally by Lemma 2.6 we have

q

p− 1
(λ+ − λ−) =

12i

µ0(N)(p+ 1)
+O(1).

This completes the proof. �

To pass from asymptotic control of ghost ∆-slopes as in Proposition 4.8 to asymptotic
control of ghost slopes, we need to show that i = dk and i = dk + dnew

k are asymptotically
indices of points on NP(Gk) (Lemma 4.11 below). First, we give asymptotic control of the
ghost slopes over “oldform” and “newform” ranges.

Lemma 4.9. If x > 0 then there exists a k′ such that if k ≥ k′ then

(a) vp(∆i(wk)) <

(
1

p+ 1
+ x

)
k for all i ≤ dk, and

(b) vp(∆i(wk)) >

(
p

p+ 1
− x
)
k for all i ≥ dk + dnew

k .

Proof. We check the claim (a) of the lemma as (b) is handled similarly. Note that if i ≤ dk
then ∆∗i (wk) = ∆i(wk), and i = O(k). So, Proposition 4.8 implies there is a constant A ≥ 0
such that if i ≤ dk then

vp(∆i(wk)) ≤
12i

µ0(N)(p+ 1)
+ A log k.

10The proof below can easily be modified to handle p = 2, 3 and N = 1. For example, the corrected
formula for ∆+

i is ∆+
i (wk) = Pk+1 −4,λ+−1(wk) · (w12i+2 − wk), and so the estimates that follow will only be

off by O(log k, log i).
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Since i ≤ dk =
kµ0(N)

12
+O(1),

vp(∆i(k)) ≤ k

p+ 1
+ A log k +B

for some B > 0. The lemma clearly follows now. �

Lemma 4.10. Set yi(k) = vp(gi(wk)). Then,

ydk+dnewk
(k)− ydk(k)

dnew
k

=
k

2
+O(log k).

Proof. By Proposition 4.8, we have

ydk(k) =

dk∑
i=1

vp(∆i(wk)) =

dk∑
i=1

12i

µ0(N)(p+ 1)
+O(log(k))(16)

=
12

µ0(N)(p+ 1)

(
dk
2

)
+O(k log k) =

6(dk)
2

µ0(N)(p+ 1)
+O(k log k)

Among dk < i < dk + dnew
k , wk is a zero of ∆i exactly as many times as it is a pole (by

construction), and so
dk+dnewk∏
j=dk+1

∆i(wk) =

dk+dnewk∏
j=dk+1

∆∗i (wk).

Arguing as above, using Proposition 4.8, gives

(17) ydk+dnewk
(k) =

dk+dnewk∑
i=1

vp(∆
∗
i (wk)) =

6(dk + dnew
k )2

µ0(N)(p+ 1)
+O(k log k)

Combining (16) and (17), we deduce that

ydk+dnewk (k) − ydk(k)

dnew
k

=
1

dnew
k

·
(

6((dk + dnew
k )2 − (dk)

2)

µ0(N)(p+ 1)
+O(k log k)

)
=

6dk,p
µ0(N)(p+ 1)

+O(log k) =
k

2
+O(log k),

as desired. �

Lemma 4.11. For k � 0, i = dk and i = dk + dnew
k are indices of break points on NP(Gk).

Proof. This is immediate from the two previous lemmas, and the next lemma whose proof
we leave to the reader. �

Lemma 4.12. Consider a collection P = {(i, yi) : i ≥ 0} such that yi ∈ R≥0 ∪ {∞} and

yi = ∞ if and only if N1 < i < N2 for some Ni ≥ 0. If i < j, set ∆i,j =
yj−yi
j−i , and set

∆i := ∆i−1,i. Assume that there are constants γi such that:

(a) If i ≤ N1 then ∆i ≤ γ1;
(b) If N2 < i then ∆i ≥ γ2; and
(c) γ1 < ∆N1,N2 < γ2.

Then, N1 and N2 are indices of break points of NP (P).
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We now prove the main theorem of this section.

Proof of Theorem 4.1. Let C = 12
µ0(N)(p+1)

. We need to show that there exists a constant

A > 0 such that

(i) if dk < i ≤ dk + dnew
k then −A log k ≤ si(k)− k/2 ≤ A log k, and

(ii) If i ≤ dk or i > dk + dnew
k then −Amax(log k, log i) ≤ si(k)− Ci ≤ Amax(log k, log i)

It suffices to check A exists independently for each of the four bounds.
For (i), if k is fixed then only finitely many i satisfy i ≤ dk + dnew

k and so we may, without
loss of generality, assume that k is sufficiently large. In that case, Lemma 4.11 implies that
the indices dk and dk + dnew

k are indices of break points on NP(Gk), and so Lemma 4.10
proves (i) holds for some A > 0.

For case (ii), we write yi(k) = vp(gi(wk)). To compute an asymptotic for si(k) it suffices
to assume that (i − 1, yi−1(k)) is a break point of the Newton polygon. In that case, by
definition of Newton polygon, we know that si(k) ≤ vp(∆i(wk)) for all such i and all k and
so Proposition 4.8 gives us upper bounds for (ii).

Now we deal with lower bounds. We may separately assume that i ≤ dk and i > dk+dnew
k .

First assume that i ≤ dk. Then i = O(k), so we can choose a constant A > 0 such that
if m ≤ dk then vp(∆m(wk)) ≥ Cm − A log k (Proposition 4.8). In particular, if j ≥ 0 and
i+ j ≤ dk then

(18) yi+j(k) = yi−1(k) +

i+j∑
m=i

vp(∆m(wk)) ≥ yi−1(k) +

i+j∑
m=i

(Cm− A log k)

≥ yi−1(k) + (Ci+
Cj

2
)(j + 1)− (A log k)(j + 1).

Thus,

(19)
yi+j(k)− yi−1(k)

j + 1
≥ Ci+

Cj

2
− A log k.

The right-hand side of (19) is minimized at j = 0 and so we deduce

(20)
yi+j(k)− yi−1(k)

j + 1
≥ Ci− A log k

for all i ≤ dk and j ≥ 0 with i + j ≤ dk. Finally by Lemma 4.11, except for finitely many
k, and thus finitely many i ≤ dk, si(k) is the slope of line segment connecting index i− 1 to
index i + j for some i + j ≤ dk. Thus we conclude si(k) − Ci ≥ −A log k for some A > 0
and all i ≤ dk.

Now consider the case where i > dk+dnew
k . If i is fixed then i ≤ dk except for finitely many

k and so we may also suppose in what follows that i is sufficiently large (to be determined).
Continuing, since i > dk + dnew

k , we have k = O(i) and so the analog of (19) is

(21)
yi+j − yi−1

j + 1
≥ Ci+

Cj

2
− A log(i+ j)

for all j ≥ 0. The right-hand side of (21), as a function of j, has a unique local minimum
at j = 2A/C − i and so if we suppose that i > 2A/C then the right-hand side of (21) is
minimized at j = 0 on the domain j ≥ 0. The proof is now completed just as before. �
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5. Halos and arithmetic progressions

The goal of this section is to prove that for weights κ with wκ /∈ Zp, the slopes of NP(Gκ)
are, except for a finite number of terms, a finite union of arithmetic progressions whose
common difference can be explicitly determined. Throughout we will assume that p is odd.
See Remark 5.13 for p = 2.

Fix a componentWε of p-adic weight space, and we implicitly assume all weights lie within

Wε in what follows. Set G(w, t) = G(ε)(w, t) ∈ Fp[[w, t]] for the reduction modulo p of the

ghost series. We write NP(G) for the Newton polygon of G(w, t) computed with respect
w-adic valuation on the coefficients in Fp[[w]]. Write

Cp,N :=
p(p− 1)(p+ 1)µ0(N)

24
,

and if r ≥ 0 is an integer write Cp,N,r = prCp,N . Since p is odd, p(p− 1)(p+ 1) ≡ 0 mod 24,
so Cp,N is an integer divisible by µ0(N). Recall that if wκ /∈ Zp then we write ακ =
supw′∈Zp vp(wκ − w′) ∈ (0,∞).

Theorem 5.1. Assume that wκ /∈ Zp and write r = bακc. Then, the slopes of NP(Gκ) form
a finite union of Cp,N,r-many arithmetic progressions with common difference

(p− 1)2

2

(
ακ +

r∑
v=1

(p− 1)pr−v · v

)
up to finitely many exceptional slopes contained within the first Cp,N,r slopes.

In Theorem 5.1, the condition that r = 0 is equivalent to 0 < vp(wκ) < 1, and in that
case ακ = vp(wκ). The conclusion is the the slopes of NP(Gκ) are, up to a finite number
of exceptions, a finite union of Cp,N -many arithmetic progressions of common difference
(p−1)2

2
· vp(wκ). From the ghost spectral halo (Theorem 1.7 in the introduction) we deduce:

Corollary 5.2. The slopes of NP(G) are a finite union of Cp,N -many arithmetic progressions

whose common difference is (p−1)2

2
up to finitely many exceptional slopes contained within the

first Cp,N slopes.

Remark 5.3. The exceptional slopes in NP(G) should not exist (see the comments after
Theorem 1.8 in the introduction) but we have not pursued proving this stronger statement.

The remainder of the section is devoted to proving Theorem 5.1. Our method, as in Section
4, is to first verify a corresponding statement for ghost ∆-slopes, and, from this, deduce our
result about ghost slopes. To this end, here is a general lemma on Newton polygons.

Lemma 5.4. Consider a collection P = {(i, yi) : i ≥ 0} such that yi ∈ R>0. If the ∆-slopes
of P form a union of C arithmetic progressions with common difference δ, then the same
holds for the slopes of NP(P) up to finitely many exceptional slopes contained within the first
C slopes.

Proof. This follows immediately from observing that if x ≥ C is the index of a breakpoint
of NP(P), then x− C is also the index of a breakpoint of NP(P). �
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To deduce Theorem 5.1 from Lemma 5.4, we need to verify that the Newton slopes of Gκ

are a finite union of arithmetic progressions. This is not quite true, but we will show it is
true after excluding the weight w = w2 from ever appearing as a zero of a ghost coefficient.
This modification has no effect on NP(Gκ). Specifically:

Lemma 5.5. For each i ≥ 1, write g]i(w) = gi(w)(w−w2)−m where m = ordw=w2 gi(w). Set

G](w, t) = 1 +
∑
g]i(w)ti and G] as its reduction modulo p. Then, NP(Gκ) = NP(G]

κ) for

all κ ∈ W, and NP(G) = NP(G]).

Proof. This follows from (the equality in) Lemma 2.10(b). �

Convention: for the rest of this section we replace the gi(w) by g]i(w).

We now aim to show that the ∆-slopes of (the newly defined) Gκ form a finite union of
arithmetic progressions. Recall, ∆i = gi/gi−1 and ∆i = ∆+

i /∆
−
i with ∆±i ∈ Zp[[w]] and

gcd(∆+
i ,∆

−
i ) = 1. As preparation, we will compare the zeros of ∆±i to those of ∆±i+Cp,N,r .

We write HZ(−) and LZ(−) for the highest and lowest zeros as in Section 2 (if they exist).

Lemma 5.6.

(a) If λ(∆+
i ) > 0, then

HZ(∆+
i+Cp,N

) = HZ(∆+
i ) +

p(p+ 1)(p− 1)

2
and LZ(∆+

i+Cp,N
) = LZ(∆+

i ) + p(p− 1).

(b) If λ(∆−i ) > 0, then

HZ(∆−i+Cp,N ) = HZ(∆−i ) + p(p− 1) and LZ(∆−i+Cp,N ) = LZ(∆−i ) +
(p+ 1)(p− 1)

2
.

Proof. We prove the assertions for ∆+
i and leave part (b) for the reader (the proofs are

analogous).
We recall that by (3), for each i, HZ(∆+

i ) is the largest k ∈ Wε such that dk < i (with

k ≥ 4, convention in this section). Next, write C = p(p+1)(p−1)
2

=
12Cp,N
µ0(N)

≡ 0 mod p− 1. Thus

k 7→ k + C preserves the component of weight space. Moreover, since dk+12 = dk + µ0(N)
we have dk+C = dk + Cp,N .

Now let k = HZ(∆+
i ) and k′ = HZ(∆+

i+Cp,N
). The previous paragraph implies that k+C ≤

k′. Write k′−C = k+ j(p− 1) for some j ≥ 0. If j > 0 then k′−C > k and so by definition
of highest zero, i ≤ dk′−C . But the previous paragraph then implies that i + Cp,N ≤ dk′ ,
which is a contradiction to the definition of k′.

Proving the formula for LZ(∆+
i+Cp,N

) is slightly more tedious. Set k = LZ(∆+
i ) and k′ =

LZ(∆+
i+Cp,N

). Then k′ ≤ k + p(p− 1) because Lemma A.6 implies that

(22) dk+p(p−1) +

⌊
dnew
k+p(p−1)

2

⌋
= dk +

⌊
dnew
k

2

⌋
+ Cp,N .

If p = 3 and N = 1 then k′ = k + 6 by Table 1. Thus we assume that p > 3 or N > 1. In
particular, Lemma A.2 then implies that since we already showed that k′ ≤ k + p(p− 1) we
may finish by showing

(23) dk+(p−1)(p−1) +

⌊
dnew
k+(p−1)(p−1)

2

⌋
< i+ Cp,N .
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By definition of k = LZ(∆+
i ), i ≤ dk + bd

new
k

2
c and either

i) k − (p− 1) < 4, or

ii) k − (p− 1) ≥ 4 but dk−(p−1) + b
dnew
k−(p−1)

2
c < i.

If (ii) holds then (23) is immediate from Lemma A.6 and the assumption in (ii).
It remains to handle case (i): 4 ≤ k ≤ p+ 1. Then, k is the lowest integer weight k ≥ 4 on

our fixed component and so the assumption that λ(∆+
i ) > 0 and k = LZ(∆+

i ) implies that

(24) dk < i ≤ dk +

⌊
dnew
k

2

⌋
.

First assume p 6= 3. Then Lemma A.6 reduces (23) to showing

dk +

⌊
dnew
k

2

⌋
< i+

(p− 1)(p+ 1)

24
µ0(N)

instead. But by (24), this reduces to checking for i = dk + 1, and in that case checking⌊
dnew
k

2

⌋
< 1 +

(p− 1)(p+ 1)

24
µ0(N).

We leave this final point for the reader.
Now assume that p = 3, so that our assumption now is that k = 4 is the lowest zero of

∆+
i . We have C3,N = µ0(N). By (24) it is enough to show (23) when i = d4 + 1, and thus

we need to check

d8 +

⌊
dnew

8

2

⌋
< d4 + 1 + µ0(N),

which we also leave for the reader. �

Proposition 5.7. If i ≥ 1 then

(a) λ(∆+
i+Cp,N

) = λ(∆+
i ) + p(p−1)

2
, and

(b) λ(∆−i+Cp,N ) = λ(∆−i ) + p−1
2

.

Proof. If p = 3 and N = 1, then this proposition follows from Table 1. Otherwise, for each
i, Proposition 2.4(a) (valid by our exclusion of p = 3 and N = 1) implies that

(25) λ(∆±i ) = 1 +
1

p− 1
(HZ(∆±i )− LZ(∆±i )).

If λ(∆+
i ) > 0 then (a) follows (25) and Lemma 5.6(a), and if λ(∆−i ) > 0 then (b) follows

from (25) and Lemma 5.6(b).
If λ(∆+

i ) = 0 we proceed as follows (and leave the reader to deal with λ(∆−i ) = 0). First,
if k < 4 is even then we re-define dk and dnew

k using the formulas (31) and (32) in Appendix
A. We then define HZ(∆+

i ) and LZ(∆+
i ) by insisting that (3) holds, i.e. HZ(∆+

i ) is the largest
k ∈ Wε such that dk < i and LZ(∆+

i ) is the least k ∈ Wε such that i ≤ dk + bdnew
k /2c.

Continue to suppose that λ(∆+
i ) = 0. Then we must have HZ(∆+

i ) < LZ(∆+
i ) (since

otherwise ∆+
i would have a zero). Moreover, by definition, HZ(∆+

i ) ≡ LZ(∆+
i ) mod p − 1.

We claim that LZ(∆+
i )− HZ(∆+

i ) = p− 1.
We will prove our claim by contradiction. First, we observe that HZ(∆+

i ) ≥ 0. Indeed,
if N > 1 then it is easy to see that if k ≤ 0 then dk < 0 ≤ i, and if N = 1 then
d2 = −1 < i for any i ≥ 0, and thus HZ(∆+

i ) ≥ 2 in fact. Next, if LZ(∆+
i )−HZ(∆+

i ) > p−1
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then since HZ(∆+
i ) ≡ LZ(∆+

i ) mod p − 1 (by definition) we can find a k ∈ Wε such that

HZ(∆+
i ) < k < LZ(∆+

i ). This implies i ≤ dk and dk + bd
new
k

2
c < i, whence dnew

k < 0. But this
implies that k ≤ 0, which is a contradiction.11

Finally, the reader may check that the proof of Lemma 5.6 extends to the new definitions
of HZ(∆+

i ) and LZ(∆+
i ), and thus

λ(∆+
i+Cp,N

) =
HZ(∆+

i )− LZ(∆+
i )

p− 1
+ 1 +

p(p− 1)

2
=
p(p− 1)

2
.

This completes the proof. �

Remark 5.8. The i-th w-adic ∆-slope of G is λ(gi) − λ(gi−1) = λ(∆+
i ) − λ(∆−i ). Thus,

Proposition 5.7 together with Lemma 5.4 implies Corollary 5.2.

We briefly unwind the condition wκ /∈ Zp. We thank Erick Knight for pointing out
the equivalence in Lemma 5.10 below. Write Znr

p for the ring of integers in the maximal

unramified extension of Qp contained in Qp, and ω : F
×
p → (Znr

p )× for the Teichmüller lift.

Lemma 5.9. If x0 ∈ OCp and there exists x′ ∈ Znr
p −Zp such that vp(x0 − x′) > vp(x

′) then
vp(x0 − x) = min(vp(x0), vp(x)) for all x ∈ Zp.

Proof. Suppose x ∈ Zp and vp(x0) = vp(x). We will show vp(x0−x) = vp(x0). If x0 ∈ Znr
p −Zp

then the result is clear. Indeed, the assumption x0 /∈ Zp implies that the reductions of

p−vp(x0)x0 and p−vp(x0)x are distinct in F
×
p .

Now assume x0 is general. Since vp(x0 − x′) > vp(x
′), we have vp(x0) = vp(x

′). By the
previous paragraph applied to x′, we know that vp(x

′ − x) = vp(x
′). Thus, vp(x0 − x′) >

vp(x
′ − x) as well. But then, the ultrametric inequality implies

vp(x0 − x) = vp(x
′ − x) = vp(x

′) = vp(x0),

as promised. �

Lemma 5.10. If x0 ∈ OCp then x0 /∈ Zp if and only if either:

(a) there exists x′ ∈ Zp such that vp(x0 − x′) /∈ Z ∪ {∞}, or
(b) there exists x′ ∈ Znr

p − Zp such that vp(x0 − x′) > vp(x
′).

Proof. We assume either (a) or (b) holds and we show supx∈Zp vp(x0− x) <∞. If (b) holds,
then this is done by Lemma 5.9. Suppose that (a) holds, and choose such an x′ and let
x ∈ Zp. Then, since vp(x0 − x′) /∈ Z ∪ {∞} and vp(x

′ − x) ∈ Z we have

vp(x0 − x) = min(vp(x0 − x′), vp(x′ − x)) ≤ vp(x0 − x′).
We now show the converse. Specifically, we show that if x0 ∈ Zp−Zp and vp(x0−x′) ∈ Z for

all x′ ∈ Zp then (b) holds. By assumption, vp(x0) ∈ Z, and so x′0 = pvp(x0)ω(p−vp(x0)x0) ∈ Znr
p

satisfies vp(x
′
0) = vp(x0) and vp(x0 − x′0) > vp(x0). If x′0 /∈ Zp then we are done. Otherwise

set x1 = x0 − x′0. Then x1 satisfies all the hypotheses imposed on x0 in this paragraph, and
vp(x1) > vp(x0). Thus we can repeat the construction of x1 from x0, and by induction we
can construct an infinite sequence x0, x1, . . . and x′0, x

′
1, . . . such that xi+1 = xi − x′i with

i) xi ∈ Zp − Zp with vp(x0) < vp(x1) < · · · ,
11If k ≥ 4 then obviously dnewk ≥ 0 and the reader may check that dnew2 ≥ 0 for any p and N , given our

overwritten definition.
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ii) x′i ∈ Znr
p with vp(xi − x′i) > vp(xi) = vp(x

′
i) for all i ≥ 0,

In particular x0 =
∑
x′i. Since x0 /∈ Zp there exists a smallest i ≥ 1 such that x′i ∈ Znr

p −Zp.
We claim x′0 − x′i witnesses that (b) is true for x0.

To see that, set x′ = x′0 − x′i /∈ Zp. Since x′0 ∈ Zp, by Lemma 5.9, we have

vp(x
′) = min(vp(x

′
i), vp(x

′
0)) = min(vp(xi), vp(x0)) = vp(x0).

Then

vp(x
′ − x0) = vp(−x1 − x′i) ≥ vp(x1) > vp(x0) = vp(x

′),

as promised. �

Lemma 5.11. Suppose that h ∈ Zp[[w]] and the zeros of h are all in pZp. Let w′ ∈ mCp

such that either

(a) vp(w
′) /∈ Z, or

(b) there exists a w̃ ∈ Znr
p − Zp such that vp(w

′ − w̃) > vp(w̃).

If r = bvp(w′)c, then

vp(h(w′)) = vp(w
′) ·# {w′′ : h(w′′) = 0 and vp(w

′′) ≥ r + 1}

+
r∑

v=1

v ·# {w′′ : h(w′′) = 0 and vp(w
′′) = v} .

Proof. In either case, if w′′ ∈ pZp then vp(w
′ − w′′) = min(vp(w

′), vp(w
′′)) (see Lemma 5.9

for case (b)). From this, the statement is immediate. �

The proof of one final lemma is left to the reader.

Lemma 5.12. Suppose that (ki) is an ordered list of integers which form an arithmetic
progression of length M = peu, with (u, p) = 1, and difference δ with (δ, p) = 1. Then,

(a) # {ki : vp(ki) ≥ e} = u, and
(b) if 0 ≤ v < e then # {ki : vp(ki) = v} = uϕ(pe−v) = u(p− 1)pe−v−1.

We’re now in position to prove Theorem 5.1.

Proof of Theorem 5.1. Recall that we assume wκ /∈ Zp, we write ακ = supw∈Zp vp(wκ − w),
and r = bακc. For notational ease, write C = Cp,N,r = prCp,N . Since wκ is not an integer,
∆i(wκ) is well-defined for each i ≥ 1. Our goal is to compare vp(∆i(wκ)) to vp(∆i+C(wκ))
and then apply Lemma 5.4. Write ∆i = ∆+

i /∆
−
i as before.

We first focus on ∆+
i . By Proposition 5.7(a) we have λ(∆+

i+C) = λ(∆+
i ) + pr+1 · p−1

2
.

By Proposition 2.4(a), the zeros of ∆+
i (and ∆+

i+C) are of the form wk with k lying in an
arithmetic progression of integers whose difference is p− 1 (save for possibly one zero when
p = 3 and N = 1). Write ∆+

i+C = a · b where a, b ∈ Zp[[w]], λ(b) = pr+1 · p−1
2

, and where the
zeros of a(w) are the highest zeros w = wk of ∆+

i+C for the highest λ(∆+
i )-many k.

Since wκ /∈ Zp, wκ must satisfy one of the two conditions of Lemma 5.10. If (a) is true
then choose an integer k0 such that ακ = vp(wκ − wk0) /∈ Z, and if (ii) is true then set
wk0 = k0 = 0. For each h ∈

{
a, b,∆+

i

}
we then apply Lemma 5.11 to h(w + wk0) and
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w′ = wκ − wk0 . We deduce (remember vp(wk − wk0) = 1 + vp(k − k0)) that

(26) vp(h(wκ)) = vp(wκ − wk0)︸ ︷︷ ︸
ακ

·# {k : h(wk) = 0 and vp(k − k0) ≥ r}

+
r−1∑
v=0

(v + 1) ·# {k : h(wk) = 0 and vp(k − k0) = v} .

Now we claim that vp(a(wκ)) = vp(∆
+
i (wκ)). If λ(∆+

i ) = 0 then there is nothing to show.
Otherwise, if λ(∆+

i ) > 0 then Lemma 5.6(a) implies that

HZ(a) = HZ(∆+
i+C) ≡ HZ(∆+

i ) mod pr+1.

Since the k for which wk is a zero of either ∆+
i or a is an arithmetic progression, and the

last terms are congruent modulo pr+1 (as we just checked), we see that the right-hand side
of (26) is the same for h = a and h = ∆+

i . (The reader can check that the single missing
zero when p = 3 and N = 1 does not affect this argument.)

On the other hand, the zeros of b are w = wk with k lying in an arithmetic progression
of length M = pr+1 p−1

2
and difference p − 1. Thus it follows from the previous paragraph,

Lemma 5.12 and (26) that

vp

(
∆+
i+C(wκ)

∆+
i (wκ)

)
= vp(b(wκ))

= ακ ·
(
p− 1

2
+
p− 1

2
(p− 1)

)
+

r−1∑
v=0

(v + 1) · p− 1

2
(p− 1)pr−v

= p · p− 1

2

(
ακ +

r∑
v=1

v · (p− 1)pr−v

)
.

An analogous computation shows that

vp

(
∆−i+C(wκ)

∆−i (wκ)

)
=
p− 1

2

(
ακ +

r∑
v=1

v · (p− 1)pr−v

)
Combining the previous two equations, we deduce

vp

(
∆i+C(wκ)

∆i(wκ)

)
=

(p− 1)2

2

(
ακ +

r∑
v=1

(p− 1)pr−v · v

)
This shows that the ∆-slopes form a union of C arithmetic progressions whose common
difference is our claimed one. Our theorem then follows from Lemma 5.4. �

Remark 5.13. One can ask for a version of Theorem 5.1 valid if p = 2. If N = 1 then it
is not difficult to establish an analog of Theorem 5.1. Namely, if ακ < 3 then the slopes of
NP(Gκ) is {i · v2(wκ) : i = 1, 2, . . . } (Theorem 3.2) and thus a single arithmetic progression
with common difference v2(wκ). If ακ ≥ 3 and r = bακc then one may also show: except
for finitely many exceptional slopes, the slopes of NP(Gκ) are a finite union of 2r−2-many
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arithmetic progressions whose common difference is

ακ +
r∑

v=3

v · 2r−v.

The proof is analogous to the above, using Proposition 3.1 for explicit analogs of Lemma
5.6, Proposition 5.7, etc.

One could also ask about N > 1. But, since the ghost series requires modification in that
case (Section 6 below) we did not pursue this.

6. A 2-adic modification for the ghost series

In this section we construct a modification of the ghost series which we conjecture deter-
mines slopes when p = 2 is Γ0(N)-regular (Conjecture 6.4 below). The theme of this section,
and the next, is that non-integral slopes are forced to be repeated and this should be taken
into account in the ghost series. The reader may read either section first.

We emphasize that N is an odd positive integer in this section. Recall [5, Definition 1.3]:

Definition 6.1. The prime p = 2 is called Γ0(N)-regular if

(a) The eigenvalues T2 acting on S2(Γ0(N)) are all 2-adic units and
(b) The slopes of T2 acting on S4(Γ0(N)) are all either zero or one.

Our definition is equivalent to [5, Definition 1.3] by Hida theory. Also by Hida theory,

(27) dimS2(Γ0(2N))ord ≤ dimS2(Γ0(N)) + dimS2(Γ0(2N))2−new

= dimS2(Γ0(2N))− dimS2(Γ0(N))

with equality if p = 2 is Γ0(N)-regular.
We now produce non-integral slopes for U2 acting on certain spaces with quadratic charac-

ter regardless of a regularity hypothesis.12 Write η±8 for the Dirichlet characters of conductor 8
with sign±. The character η±8 is quadratic, so the slopes of U2 acting on Sk(Γ0(N)∩Γ1(8), η±8 )
are symmetric around k−1

2
. Hida theory implies that

(28) dimS2(Γ0(N) ∩ Γ1(8), η+
8 ){0,1} = 2 dimS2(Γ0(2N))ord.

(Here and below, if S is a set of cuspforms and X is a set of real numbers then we write SX

for the subspace spanned by eigenforms whose slope lies in X.)

Proposition 6.2. If N > 1 is odd then dimS2(Γ0(N) ∩ Γ1(8), η+
8 )(0,1) > 0.

Proof. By (27) and (28), we see

dimS2(Γ0(N) ∩ Γ1(8), η+
8 )(0,1) ≥

dimS2(Γ0(N) ∩ Γ1(8), η+
8 )− 2

(
dimS2(Γ0(2N))− dimS2(Γ0(N))

)
.

The final expression is positive if N > 1 (see Lemma A.8). �

Since the characters η±8 have values only ±1, any non-integral slope appearing in a
space Sk(Γ0(N) ∩ Γ1(8), η±8 ) must be repeated (compare with Lemma 7.1). In particu-
lar, Proposition 6.2 implies that for N > 1, there exists non-integral repeated slopes in
S2(Γ0(N) ∩ Γ1(8), η+

8 ). The ghost series defined thus far does not see these slopes:

12Note: not in spaces Sk(Γ0(2N)) which would contradict Buzzard’s conjecture.
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Example 6.3. p = 2 is Γ0(3)-regular since there are no forms of weight two or four. The
space S2(Γ0(3) ∩ Γ1(8), η+

8 ) is two-dimensional with slope 1/2 repeated twice. On the other
hand, the ghost series predicts slopes zero and one (see Example 2.14).

Our goal now is to salvage the ghost conjecture for p = 2 by including the fractional
(repeated) slopes appearing in the spaces Sk(Γ0(N) ∩ Γ1(8), η±8 ) as k varies and ± = (−1)k

(we use this implicit notation throughout). Specifically, for each integer k ≥ 2, we are going
to define a second multiplicity pattern m◦(k) = (m◦i (k)) which will describe the multiplicity
of the weight zkη±8 as a zero of a modified ghost series. Our model will be

(29) m◦i (k) > 0 ⇐⇒ the i-th and (i+ 1)-st slope in Sk(Γ0(N) ∩ Γ1(8), η±8 )

are the same and strictly between k − 2 and k − 1.

In fact, for each i there will be at most one k such that m◦i (k) is positive. Granting the
definition of m◦i (k), we then define

g◦i (w) = gi(w) ·
∞∏
k=2

(w − wzkη±8 )m
◦
i (k)

and the modified ghost series G◦(w, t) = 1 +
∑
g◦i (w)ti. It is still an entire series over Z2[[w]]

(since we’ve only added more zeros). If N = 1 then G = G◦.

Conjecture 6.4. If p = 2 is Γ0(N)-regular then NP(G◦κ) = NP(Pκ) for each κ ∈ W.

We briefly give the evidence we have for Conjecture 6.4. Recall we write BA(k) for the
output of Buzzard’s algorithm in weight k. The levels N in Theorem 6.5 below are all the
levels N ≤ 167 such that p = 2 is Γ0(N)-regular. The next N is 191.13

Theorem 6.5. If N = 3, 7, 23, 31 then NP((G◦k)
≤dk) = BA(k) for all even k ≤ 5000, or if

N = 47, 71, 103, 127, 151, 167 then NP((G◦k)
≤dk) = BA(k) for all even k ≤ 2050.

Remark 6.6. One could ask about the asymptotic results in Section 4. As we will see, for
each i, the total multiplicity

∑
km

◦
i (k) of zeros of g◦i which were not a zero of gi is bounded,

and the extra zeros added are at weights κ which satisfy v2(wk − wκ) = 1 for all k ∈ Z.
Thus the estimates in Section 4 will only be effected by O(1) terms and so Corollary 4.2 and
Corollary 4.3 should still hold with G(w, t) replaced by G◦(w, t).

The rest of this section is devoted to describing the multiplicity m◦i (k) of wzkη±8 as a zero of

g◦i . The idea is to force the issue for m◦i (2) by insisting that (29) holds, and that the precise
value of m◦i (2) follows the up-down pattern within the indices which realize each fractional
slope. We then extend the pattern to k > 2 “using the spectral halo” (Section 1.4.3).

More precisely, if k ≥ 2 write

d◦k := dimSk(Γ0(N) ∩ Γ1(8), η±8 ).

Write ν◦1(2) ≤ ν◦2(2) ≤ · · · ≤ ν◦d◦2(2) for the list of slopes of U2 acting on S2(Γ0(N)∩Γ1(8), η+
8 ).

Write ν◦i1(2) < ν◦i2(2) < · · · < ν◦it(2) for the distinct slopes appearing in this list where ij is

13If p = 2 is Γ0(N)-regular then must N be either 1,3 or be a prime congruent to 7 mod 8? Anna
Medvedovsky tells us that p = 2 is not Γ0(`)-regular when ` > 3 is a prime 3 mod 8.
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the least i such that ν◦ij(2) = ν◦i (2) (so i1 = 1). Also set i0 = 0, it+1 = d◦2, and µj for the

multiplicity of ν◦ij(2) among the ν◦i (2). Then set

m◦i (2) =

{
si(µj − 1, ij−1) if ij ≤ i < ij+1 for some 1 ≤ j ≤ t and ν◦ij(2) 6= 0, 1

0 otherwise.

where si(∗, ∗) is the up-down pattern from Section 1.3. We give three examples (p = 2 is
Γ0(N)-regular for each N below):

Example 6.7. Let N = 3. Then the slopes are computed in Example 6.3, and we have
ν◦1(2) = ν◦2(2) = 1

2
. Thus t = 1, it = i1 = 1 and (m◦i (2) : i ≥ 1) = (1, 0, 0, 0, . . . ).

Example 6.8. LetN = 7. The slopes of U2 acting on S2(Γ0(7)∩Γ1(8), η+
8 ) are [0, 1

2
, 1

2
, 1

2
, 1

2
, 1].

We have

ν◦1(2) = 0 < ν◦2(2) = · · · ν◦5(2) =
1

2
< ν◦6(2) = 1.

Thus t = 3, (i1, i2, i3) = (1, 2, 6) and (m◦i (2) : i ≥ 1) = (0, 1, 2, 1, 0, 0, . . . ).

Example 6.9. Let N = 23. Then the slopes are [03, (
1
3
)6, (

1
2
)4, (

2
3
)6, 13] (the subscripts refer

to the multiplicity). The sequence m◦i (2) is given by

(m◦i (2) : i ≥ 1) = (0, 0, 0, 1, 2, 3, 2, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, . . . ).

Now, if k > 2 then we will set

(30) m◦i (k) =

{
m◦d◦k−i

(2) if 1 ≤ i < d◦k
0 otherwise.

This completes the definition of the m◦i (k) and completes the statement of Conjecture 6.4.
The rest of this section is devoted to expanding on the definition of m◦i (k) when k > 2.

First, the authors believe that a version of the spectral halo will imply that k 7→ NP(Pzkη±8 )

is independent of k. In particular, if our modus operandi is to predict the fractional slopes
appearing in Sk(Γ0(N)∩Γ1(8), η±8 ) then we should restrict to slopes between k−2 and k−1
(the lower slopes being correctly predicted “by induction” on k; compare with Remark 6.11).

Now, when is the i-th and (i+ 1)-st slope going to be more than k− 2 and not more than
k − 1? First, “by the spectral halo” we should certainly have d◦k−1 < i. But, there are also
the c0(N)-many θk−2-critical Eisenstein series which are overconvergent p-adic cuspforms of
weight zk−1η±8 and slope k−2 (c0(N) being the number of cusps of X0(N)). Thus if we want
the i-th and (i+ 1)-st slope to be larger than k− 2, we should expect d◦k−1 + c0(N) < i. We
now note the following lemma.

Lemma 6.10. If k > 2 and d◦k−1 + c0(N) < i then d◦k − i < d◦2.

Proof. By Lemma A.7 we have d◦2 = µ0(N) − c0(N) and if k > 2 then d◦k = µ0(N) + d◦k−1.
The lemma clearly follows then. �

Now write ν◦1(k) ≤ ν◦2(k) ≤ · · · for the slopes of U2 acting on Sk(Γ0(N)∩Γ1(8), η±8 ). Since
η±8 is quadratic, the Atkin–Lehner involution implies that

ν◦i (k) = ν◦i+1(k) is in (k − 2, k − 1) ⇐⇒ ν◦d◦k−i(k) = ν◦d◦k−i+1(k) is in (0, 1).
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“By the spectral halo”, we have an equivalence

ν◦d◦k−i(k) = ν◦d◦k−i+1(k) is in (0, 1) ⇐⇒ ν◦d◦k−i(2) = ν◦d◦k−i+1(2) is in (0, 1).

We just justified that our natural constraint on i should force d◦k − i < d◦2, so that the right-
hand side of the previous equivalence exactly describes when md◦k−i(2) > 0, and strongly
suggests the definition (30) is natural.

Remark 6.11. It is not hard to see that if 1 ≤ i < ∞ then there exists at most one k for
which m◦i (k) > 0, so we can then write m◦◦i for this non-zero value, if it exists. Based on our
heuristic of using the spectral halo, one could also form an alternate modification

g◦◦i (w) = gi(w)(w − wz2η±8 )m
◦◦
i

by adding a zero at the single weight κ = z2η±8 infinitely often. Then one could form an
alternate modified ghost series G◦◦(w, t) = 1 +

∑
g◦◦i (w)ti. Numerical checks suggests that

NP(G◦κ) = NP(G◦◦κ ) for all κ, but we will not pursue proving that here. It is certainly true
if v2(wκ) > 1.

7. A remark on fractional slopes

In this final section, we turn to look back on the ghost series heuristic. The conceptual
observation we made was that one can force repeated slopes in the Newton polygon of a
Fredholm series by forcing coefficients to vanish. Since the characteristic polynomial of Up
acting on Sk(Γ0(Np)) has integral coefficients, the theory of the Newton polygon shows that
any non-integral slope must be repeated. Thus:

Lemma 7.1. Let k ≥ 2 be an even integer. If h /∈ Z and the slope h appears in Sk(Γ0(Np))
then it appears with multiplicity at least two.

Fix an embedding ι : Q ↪→ Qp inducing a p-adic valuation vp(−) on Q. If f is an
eigenform, write ρf for the two-dimensional p-adic Galois representation associated to ρf
and ι. Write ρf for its reduction modulo p and ρf,p (resp. ρf,p) for the restriction of ρf (resp.
ρf ) to the decomposition group at p induced by ι. Whether or not ρf,p is reducible does not
depend on the choice of stable lattice used to compute ρf .

Lemma 7.2. Let η be an even Dirichlet character of conductor p. If f ∈ S2(Γ0(N)∩Γ1(p), η)
is an eigenform and vp(ap(f)) equals 0 or 1 then ρf,p is reducible. In particular, ρf,p is
reducible as well.

Proof. If vp(ap(f)) = 0 then ρf,p itself is reducible. If vp(ap(f)) = 1 then the Atkin–Lehner
involute f ′ of f has vp(ap(f

′)) = 0, so the previous sentence applies to f ′. But ρf and ρf ′
are equal up to a twist, so we are done. �

Theorem 7.3. If p ≥ 5 is Γ0(N)-irregular then there exists an even Dirichlet character η
of conductor p and an h with 0 < h < 1 such that S2(Γ0(N) ∩ Γ1(p), η)h 6= 0.

Proof. Assume that p ≥ 5 is Γ0(N)-irregular. Possibly replacing N be a proper divisor, [5,
Lemma 1.4] implies there exists an newform f ∈ Sk(Γ0(N)) of weight 4 ≤ k ≤ p + 1 such
that ρf,p is irreducible. By Ash–Stevens [2, Theorem 3.5(a)] there exists an even Dirichlet
character η of conductor p and a weight two eigenform g ∈ S2(Γ0(N) ∩ Γ1(p), η) such that
ρg ' ρf . In particular ρg,p is irreducible and now Lemma 7.2 implies 0 < vp(ap(g)) < 1. �
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Corollary 7.4. If p is Γ0(N)-irregular then there exists an even weight k ≥ 2 and an
0 < h < 1 such that Sk(Γ0(Np))h 6= 0. In particular, h is a repeated slope in Sk(Γ0(Np)).

Proof. First suppose that p ≥ 5. By Theorem 7.3 there exists an even Dirichlet character
η and 0 < h < 1 such that S2(Γ0(N) ∩ Γ1(p), η)h 6= (0). Thus the slope h appears in the

space S†z2η(Γ0(N)) of overconvergent p-adic cuspforms of weight z2η. Since η is a character

of conductor p, the weight z2η is a p-adic limit of classical algebraic weights k. By Coleman
theory, one can find k sufficiently large such that h appears as a slope in S†k(Γ0(Np)). Since
h < 1, Coleman’s classicality theorem [11, Theorem 6.1] implies Sk(Γ0(Np))h 6= (0).

Suppose that p = 3. Then, since 3 is Γ0(N)-irregular, there exists a non-zero slope h for
T3 acting on S2(Γ0(N)). If h /∈ Z then we are done. Otherwise, h = 1 and the corresponding
3-refined eigenvalues have slopes

{
1
2
, 1

2

}
.

Finally suppose that p = 2 is not Γ0(N)-regular. If either S2(Γ0(N)) or S4(Γ0(N)) has a
fractional slope we are done. If not, then then either S2(Γ0(N)) contains a slope one form,
or S4(Γ0(N)) contains a form of slope two or three (Definition 6.1). In either case, the
corresponding 2-adic refinements will have fractional slope. �

Remark 7.5. The converse to Corollary 7.4 for p odd is also true: if there exists a 0 < h < 1
such that Sk(Γ0(Np))h 6= (0) for some even weight k then p is Γ0(N)-irregular. This is a
theorem of Buzzard and Gee [8, Theorem 1.6] which relies on the p-adic local Langlands
correspondence for GL2(Qp).

Appendix A. Dimension formulas

The goal of this appendix is to gather together various estimates and formulas for the
dimensions of spaces of cuspforms. The results for spaces with trivial character are deduced
from the standard formulas in [24, Section 6.1].14 We use the notation(s): µ0(N) for the
index of Γ0(N) in SL2(Z), c0(N) for the number of cusps of X0(N), µ0,2(N) for the number
of elliptic points of order two on X0(N), µ0,3(N) for the number of elliptic points of order
three on X0(N) and g0(N) for the genus of X0(N). Many proofs are asymptotically clear
and we often leave the details of explicit constants to the reader.

We fix N and p throughout the appendix and we will also assume that p - N as a rule.
As in the main text we write dk = dimSk(Γ0(N)), dk,p = dimSk(Γ0(Np)) and dnew

k =
dimSk(Γ0(Np))p−new. For example, if k > 2 is even then

(31) dk = (k − 1)(g0(N)− 1) +

(
k

2
− 1

)
c0(N) +

⌊
k

4

⌋
µ0,2(N) +

⌊
k

3

⌋
µ0,3(N)

where g0(N) may be written as

d2 = g0(N) = 1 +
µ0(N)

12
− µ0,2(N)

4
− µ0,3(N)

3
− c0(N)

2
.

14Freely available at http://wstein.org/books/modform/modform/dimension formulas.html.
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To compute dk,p, one replaces N by Np everywhere in (31). Then it is easy to check that
for p - N and k > 2 then

(32) dnew
k =

(k − 1)(p− 1)

12
µ0(N) +

(⌊
k

4

⌋
− k − 1

4

)(
−1 +

(
−4

p

))
µ0,2(N)

+

(⌊
k

3

⌋
− k − 1

3

)(
−1 +

(
−3

p

))
µ0,3(N),

where
(
a
b

)
is the Kronecker symbol.

Lemma A.1. If N > 1 then
1

6
µ0(N)− 1

2
µ0,2(N)− 2

3
µ0,3(N) ≥ 0.

Proof. Let ω(N) denote the number of distinct prime divisors of N . Then ω(N) ≤ log3(N)
if N ≥ 6 and µ0,i(N) ≤ 2ω(N) for i = 2, 3. Moreover, if N ≥ 200 then N ≥ 7 · 2log3(N). Thus
for N ≥ 200 we conclude

µ0(N) ≥ N ≥ 7 · 2log3(N) ≥ 7 · 2ω(N) ≥ 6 ·
(

1

2
µ0,2(N) +

2

3
µ0,3(N)

)
.

We leave checking 2 ≤ N ≤ 200 for the reader (or a computer). �

Lemma A.2.

(a) If N > 1 then k 7→ dk is a weakly increasing function of even weights k ≥ 2.
(b) If N = 1 and p > 3 then n 7→ dk+n(p−1)(SL2 Z) is increasing.
(c) If N > 1 or p > 3 then dnew

k ≤ dnew
k+ϕ(2p)

Proof. For (a) it is clear from (31) that if we restrict to k ≥ 4 and either g0(N) ≥ 1 or
c0(N) ≥ 2. That leaves N = 1, which we’ve excluded, and checking d2 ≤ d4 (which is easy).

Part (b) is also easy. If N = 1, j ≥ 0 and dk > dk+j then k ≡ 0 mod 12 and j = 2. In
particular, if p is odd and dk > dk+(p−1) then p = 3.

Let’s prove (c). First, using (32) to compute dnew
k+ϕ(2p) − dnew

k , one uniformly sees that if
k ≥ 4 then

(33) dnew
k+ϕ(2p) − dnew

k ≥ ϕ(2p)(p− 1)

2
µ0(N)− µ0,2(N)− 4

3
µ0,3(N).

If N > 1 then Lemma A.1 implies the right-hand side is ≥ 0 as long as p ≥ 7. We leave the
remaining cases of p = 2, 3, 5 and N > 1, N = 1 and p > 3, and k = 2 to the reader (one
just needs to make the lower bound (33) more explicit.) �

Lemma A.3. If p is odd and n ≥ 1 then d2+n(p−1) ≥ d2 + dnew
2 with equality if n = 1.

Proof. Let’s first show equality for n = 1. One computes

(34) d2+(p−1) − (d2 + dnew
2 )

=

(⌊
p+ 1

4

⌋
− p

4
+

1

4

(
−4

p

))
µ0,2(N) +

(⌊
p+ 1

3

⌋
− p

3
+

1

3

(
−3

p

))
µ0,3(N).

The right-hand side of (34) clearly vanishes for all odd p. Next, Lemma A.2 allows us to finish
except if N = 1 and p = 3, where the result is trivial anyways because d2 + dnew

2 = 0. �
35



Lemma A.4. Let p = 2. If n ≥ 1 then d2(n+1) ≥ d2 + dnew
2 with equality when n = 1 only if

N = 1, 3, 7.

Proof. One checks explicitly that

d4 − (d2 + dnew
2 ) =

1

12
µ0(N) +

1

4
µ0,2(N)− 1

3
µ0,3(N),

and this is equal to zero if and only if N = 1, 3, 7 by an argument similar to Lemma A.1.
If N > 1 then we are finished by Lemma A.2. If N = 1 then d2 + dnew

2 = 0 so the result is
trivial in that case. �

Lemma A.5. If p ≥ 5 is odd, k ≥ 4 is even and j ≥ 0 then

dk+j(p−1),p − dk,p =
j(p− 1)(p+ 1)

12
µ0(N).

If p = 3 then the same holds for j ≡ 0 mod 3.

Proof. Let p ≥ 3. Then,(⌊
k + j(p− 1)

4

⌋
−
⌊
k

4

⌋)
µ0,2(Np) =

j(p− 1)

4
µ0,2(Np).

If p ≡ 1 mod 4 this is clear, and if p ≡ 3 mod 4 then both sides vanish because µ0,2(Np) = 0.
Similarly, if either p ≥ 5 or if j ≡ 0 mod 3 then(⌊

k + j(p− 1)

3

⌋
−
⌊
k

3

⌋)
µ0,3(Np) =

j(p− 1)

3
µ0,3(Np).

Thus,

dk+j(p−1),p − dk

= j(p− 1)(g0(Np)− 1) +
j(p− 1)

2
c0(Np) +

j(p− 1)

4
µ0,2(Np) +

j(p− 1)

3
µ0,3(Np)

=
j(p− 1)

12
(12(g0(Np)− 1) + 6c0(Np) + 3µ0,2(Np) + 4µ0,3(Np))︸ ︷︷ ︸

µ0(Np)

.

Since µ0(Np) = (1 + p)µ0(N) we are done. �

Lemma A.6. If p ≥ 5, k ≥ 4 is even and j ≥ 0 then

dk+j(p−1) − dk +

⌊
dnew
k+j(p−1)

2

⌋
−
⌊
dnew
k

2

⌋
=
j(p− 1)(p+ 1)

24
µ0(N).

If p = 3 then the same is true of j ≡ 0 mod 3.

Proof. Since dnew
k ≡ dk,p mod 2, Lemma A.5 implies that dnew

k+j(p−1) ≡ dnew
k mod 2. Thus,

dk+j(p−1) − dk +

⌊
dnew
k+j(p−1)

2

⌋
−
⌊
dnew
k

2

⌋
= dk+j(p−1) − dk +

1

2
(dnew
k+j(p−1) − dnew

k ) =
1

2
(dk+j(p−1),p − dk,p)

Thus Lemma A.5 finishes the proof. �
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We finish with formulas for spaces with character. For this we use Cohen–Oesterlé [10].

Lemma A.7. If N ≥ 1 is odd, k ≥ 2 is even and η±8 is the primitive character modulo 8
such that η±8 (−1) = (−1)k then

dimSk(Γ0(N) ∩ Γ1(8), ε) = (k − 1)µ0(N)− c0(N).

Proof. This is immediate from [10, Théorème 1]. One should take 8N for N in the reference,
χ = η±8 and note remark 1◦ in loc. cit. �

Lemma A.8. If N ≥ 1 is odd and η+
8 is the even primitive character modulo 8 then

dimS2(Γ0(N) ∩ Γ1(8), η+
8 )− 2

(
dimS2(Γ0(2N))− dimS2(Γ0(N))

)
=

2

3
(µ0(N)− µ0,3(N)) .

In particular, it is positive if and only if N > 1.

Proof. One computes explicitly that

dimS2(Γ0(2N))− dimS2(Γ0(N)) =
µ0(N)

6
+
µ0,3(N)

3
− c0(N)

2
.

The equality then follows from Lemma A.7 applied with k = 2. Regarding the positivity, if
N = 1 then µ0(N) = µ0,3(N) = 1. To check it is positive if N > 1, it reduces to a finite
computation (which we leave to the reader). �

Appendix B. The story of an explicit calculation when p = 2 and N = 1

The goal of this appendix is to describe the 2-adic calculation we made which motivated
the multiplicity pattern and the use of “ghost” in “the ghost conjecture”. We begin by
quoting an unpublished note of Buzzard.15 In it, he writes:

“...the trace [of U2 acting on overconvergent 2-adic cuspforms] vanishes at
weight w = 23+25+26+27+28+213+216+218+219+· · · , and this corresponds
to k = 2 + 22 + 23 + 211 + 215 + 216 + 218 + · · · , which, unsurprisingly, is close
to 14.”

Indeed, S14(Γ0(2)) has two distinct eigenforms, both new at 2 and whose U2-eigenvalues are
6 and −6. Thus tr(U2

∣∣
S14(Γ0(2))

) = 0 and tr(U2

∣∣
S†14(Γ0(2))

) ≡ 0 mod 213. One can check that

the zero w = 23 +25 + · · · satisfies v2(w14−w) = 13. In this way, w14 is a “ghost zero” of the
trace: it is an integer weight and the true zero of the trace is only a slight 2-adic deformation.

In order to investigate whether the above phenomenon generalizes, we implemented Koike’s
formula [19] on a computer and computed the first twenty coefficients of Pκ(t) = 1 +∑
ai(wκ)t

i (see [3]). For each i ≤ 20 we noticed that if ai(w0) = 0 then v2(w0) ∈ Z
(see [4, Appendix B]). Thus, it seems possible that the roots of the ai are relatively near
actual integer weights wk. And, we conjectured that for some meaning of “relatively near”,
the wk could be taken so that the i-th and (i + 1)-st slope in weight k is k−2

2
, i.e. k =

6i+ 8, 6i+ 10, . . . , 12i− 2, 12i+ 2 (Proposition 3.1).
Let’s see how this works out. We just pointed out that the unique zero of a1 lies on

v2(w − w14) = 13. For a2, the predicted ghost zeros are w20, w22 and w26. In Table 4 below
we give the relative position of the zeros of a2 to these three weights. We see what we
want: the true zeros of a2 are slight 2-adic deformations of wk with k = 20, 22, 26. Similarly,

15Page 2 of the note “Explicit formulae...” at http://wwwf.imperial.ac.uk/~buzzard/maths/research/notes/
37

http://wwwf.imperial.ac.uk/~buzzard/maths/research/notes/


one can work out that the six weights w26, w30, . . . , w34, w38 are ghost zeros for the third
coefficient (which has six zeros).

Table 4. Relative position of zeros of a2(w) to the weights wk for k =
20, 22, 26. (Bold indicates the witnesses to k as a “ghost zero”.)

k 20 22 26
v2(w0 − wk) : a2(w0) = 0 12, 3, 3 13, 4, 3 9, 4, 3

A departure must occur for the fourth coefficient: a4 has ten zeros and there are only nine
predicted ghost zeros. The relative position of the ten zeros to the nine predictions are given
in Table 5. What we see is that for each k = 32, 34, . . . , 46, 50 there is a small 2-adic disc
around wk containing at least one root of a4, and that there are actually two roots in a small
disc around w38. In this sense, 38 is a ghost zero for a4 with multiplicity two and the rest of
the wk have multiplicity one.

Table 5. Relative position of zeros of a4(w) to the weights wk for k =
32, 34, . . . , 46, 50. (Bold indicates the witnesses to k as a “ghost zero”.)

k v2(w0 − wk) where a4(w0) = 0
32 9, 5, 4, 4, 3, . . .
34 9, 6, 5, 4, 4, . . .
36 15, 5, 4, 4, 3, . . .
38 21

2
, 21

2
, 5, 4, 4, . . .

40 9, 5, 4, 4, 3, . . .
42 11, 5, 5, 4, 4, . . .
44 34, 5, 4, 4, 3, . . .
46 36, 5, 5, 4, 4, . . .
50 14, 6, 5, 4, 4, . . .

Continuing then with the weight k = 38, it was a ghost zero for a3 with multiplicity one,
multiplicity two for a4 and one can check it should have multiplicity one for a5 (see Table 6)

With these computations in mind, we cataloged the relative location of the zeros of
a5, a6, . . . to the ghost zeros we were predicting. Seeing the data, and writing down the
multiplicity k-by-k we saw what became the multiplicity pattern: for each k, the first and
last time appear of k as a ghost zero it has multiplicity one, the second and second to last
time it has multiplicity two, etc. To emphasize this, in Table 6 below we give the relative
positions of the zeros of each ai to the weights w38 and w62, with the multiplicity pattern
emphasized through the use of bolding.
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Table 6. Relative location of zeros of a1(w), . . . , a10(w) for w38 and w62.
(Bold indicates the witnesses to k as a “ghost zero”.)

i v2(w0 − w38) where ai(w0) = 0 v2(w0 − w62) where ai(w0) = 0
1 5 6
2 6, 4, 3 5, 4, 3
3 31, 5, 4, 4, 3, . . . 7, 5, 4, 4, 3, . . .
4 21

2
, 21

2
, 5, 4, 4, . . . 6, 5, 5, 4, 4, . . .

5 22, 6, 5, 5, 5, . . . 30, 6, 6, 5, 5, . . .
6 7, 6, 6, 5, 5, . . . 14,14, 6, 5, 5, . . .
7 7, 7, 6, 6, 5, . . . 29, 23

2
, 23

2
, 6, 5, . . .

8 7, 7, 7, 6, 6, . . . 14,14, 7, 6, 6, . . .
9 8, 7, 7, 6, 6, . . . 30, 7, 7, 6, 6, . . .
10 8, 8, 7, 6, 6, . . . 7, 7, 7, 6, 6, . . .
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