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Abstract

The group of diffeomorphisms of a compact manifold acts isometrically on
the space of Riemannian metrics with its L? metric. Following [1], [14], we
define minimal orbits for this action by a zeta function regularization. We
show that odd dimensional isotropy irreducible homogeneous spaces give rise
to minimal orbits, the first known examples of minimal submanifolds of infinite
dimension and codimension. We also find a flat two torus giving a stable min-
imal orbit. We prove that isolated orbits are minimal, as in finite dimensions.
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1 Introduction

Let X be a Riemannian manifold with an isometric action of a Lie group. If X
is finite dimensional, it follows from Hsiang’s theorem [7] that orbits of minimal
volume among all nearby orbits of the same type are in fact minimal submanifolds of
X. Gauge theory provides an infinite dimensional analogue of this situation, where
X is the space of connections on a principal bundle over a compact manifold M,
and the Lie group is the gauge group. In [8], [14], minimal orbits were defined in
this context by a zeta function regularization and examples of minimal orbits were
given. Zeta functions enter the discussion since in finite dimensions the first variation
formula computes the variation of the determinant of the metric on a submanifold;
in infinite dimensions this determinant is formally the determinant of a Laplacian
type operator and is defined by Ray-Singer/zeta function regularization. Thus the
infinite dimensional geometry of the space of connections is related to attempts to
quantize Yang-Mills theory, since regularized determinants are also a key element of
semiclassical Yang-Mills theory.

The regularization actually computes Tryll, the component of the trace of the
second fundamental form in the direction N; an orbit is minimal if Try Il = 0 for all
N. The regularization in [14] had the disadvantage of being finite only for certain
orbits. In [1], a term was added to the regularization which guarantees that the
new regularized definition of TryII is always finite. This counterterm is zero in finite
dimensions, so both regularizations generalize the usual notion of TryII.

In this paper we treat a different physically interesting case of an infinite dimen-
sional Riemannian manifold with an isometric action of an infinite dimensional group.
Here the manifold is M, the space of Riemannian metrics on a fixed compact man-
ifold X, and the group D is the space of diffeomorphisms of X. The determinants
that appear here should relate ultimately to quantum gravity.

It turns out that the case of Riemannian metrics is technically more difficult to
handle than the gauge theory case, as here the group carries no natural metric. The
resulting Laplacians used to define the regularization thus depend on a fixed choice of
metric on X, and these nonnatural Laplacians must be related to the natural Lapla-
cians that have appeared previously in discussions of M. The theory also becomes
more complicated when orbits of varying type occur. The main results are as follows

(Theorems 3.1, 3.2, 3.3, 3.5).

THEOREM 1.1 (i) In odd dimensions, the orbit of the volume one G-invariant metric
on a isotropy irreducible homogeneous space G/H is minimal within the space of
volume one metrics on G/ H.

(i) The orbits of the flat 2-tori of volume one associated to the the points (0,1)
and (1/2,+/3/2) in the upper half plane are minimal within the space of all flal tori
of volume one. The orbit associated to (1/2,v/3/2) is a stable minimal orbit.

(1ii) An orbit of isolated diffeomorphism type is minimal.



Note that the isotropy irreducible homogeneous spaces include the symmetric spaces,
but many more examples exist. These spaces are minimal orbits of infinite dimen-
sion and codimension. Part (iii) is an easy corollary of Hsiang’s theorem in finite
dimensions, but is nontrivial in infinite dimensions.

The paper is organized as follows. In §2 the first variation formula in finite dimen-
sions is rederived in terms of the zeta function of a finite dimensional transformation
which is the analogue of the Laplacians appearing in infinite dimensions. This serves
as motivation for the later sections. We also discuss the effect of varying the metric
on the submanifold, which is an unnecessary complication in finite dimensions but is
forced upon us in infinite dimensions.

In §3 we handle the case of M. §3.1 gives the general theory in infinite dimensions,
§3.2 computes minimal orbits of flat 2-tori, §3.3 treats the case of orbits of varying
type and discusses isotropy irreducible homogeneous spaces, and §3.4 gathers some
local computations of the Laplacians used.

The first author would like to thank The Erwin Schrodinger International Institute
for Mathematical Physics for its hospitality during the writing of this article.

2 The finite dimensional case

In this section we rederive the first variation formula for an immersed submanifold M
of a Riemannian manifold (M,g) in terms of the eigenvalues of a finite dimensional
operator. Fach step in this calculation has counterparts in the usual derivation (cf.
[12, Ch. T1]). Afterwards, we modify the first variation formula to motivate some
calculations in infinite dimensions.

Let i: M — M be the immersion and set L = L, = dip: T,M — Ti(x)M. We
fix a Riemannian metric ¢ on M. To be consistent with the notation in the rest
of the paper, we set A = A, = L*L:T,M — T,M. (To be strictly consistent, we
should relabel L* as L".) There exists an orthonormal basis {¢;} of T, M consisting
of eigenfunctions of A, i.e. A¢; = N\;¢;. Since 7 is an immersion, A; > 0. If we let
X; = L¢i//Xi, then {X;} is an orthonormal basis of Tji(M). For a fixed z € M,
we may extend {¢; } near x so that A,¢:(y) = Ai(y)éi(y) for all y in the neighborhood
U of x.

Take a variation F: M x (—e¢,€) — M with variation vector field N, = dF; 0)(8.),
where « is the parameter for (—e¢,€). We assume N L ¢(M). (Strictly speaking,
N € I'(s*T'M), but near x we may write N € I'(T'M).) Let X" denote the projection
of a vector X € T'M into the normal bundle to di(7T'M) (which is locally defined) in
TM. Then Tryll, the component of the trace of the second fundamental form at z
in the direction of N = N, is by definition

TI’NII = <(VXL.XZ')U, N>—

g

where V is the Levi-Civita connection on M and we are using summation convention.



Here we omit mentioning the point x in TryIl. Using (X, N) = 0, we get

TI’JVII — <VXZXZ7 N> - _<X’L7 VXeN>
Lo; L.
_<K7VL¢¢/\/A_¢N> — _/\_Z»<L¢i’VL¢€N>'

Here and from now on all inner products are with respect to g unless otherwise noted.
We now extend ¢;, N to vector fields on U x (—¢,€), F(U x (—¢,¢€)) respectively by

def

trivially setting ¢;(y,a) = ¢i(y,0) and setting Ng(y0) = dF(3,0)(0s). L also extends
to the operator dF:TU x (—e¢,¢) — TM. Thus

1 , 1
TryIl = _T<L¢i7VNL¢i> - T<L¢i7 [Li, N1).
The last term vanishes, since [Lo;, N| = [dF(¢;),dF(0,)] = dF[¢s, 0, = dF(0) = 0,
and so

TI’NII = —/\L<LQDZ,VNL¢Z> (1)

k3

REMARK: Let G = A~ be the “Green’s operator” for A. Then (1) becomes

Tryll = —(LG¢i, VnLei) = —(¢i, GL*V L)
— v (GL"VxL)

1 oo ~
= —— P (e A LV v L)dt
F(s)/o r(e VL)

s=1

_ /OO 1 Tr ("B L*VyL)dt
0

s=0

Let {(s) = Y;(X)~* be the zeta function of A. Then ((0) = dim M, and so the
variation of (0) in the direction N satisfies §5((0) = 0. Thus we may rewrite TryII
as
1 oo A Sn¢(0)
Toyll = = [T e B LNyl - 3
t I'(s) Jo (e wE) s=1 2(s — 1) ls=1 ()

Following [1], [14], we will use (3) as the regularization of TryII in infinite dimensions.
(In [14], the next to last line in (2) was used as the regularization, and the importance
of the last term was shown in [1].)

Continuing with the derivation of the first variation formula, we set g, to be the
restriction of § to Tp(y0)F'(M x {a}), and let

Lo = dFiy

TM X0



By (1), we have

1
Tevll = —(L6,, Viln) =~ N(Léi, L)
1 d 1 o
= | (Ladi Ladils, = —5 | (Batis o ’
Dh da ot Ledi badila, = —5ygn]  (Bedindidy (4)

1 — .,
= 2)\i<(6aAoz)¢i7¢i>g7

where §,A denotes the variation of A in the direction . This expression is indepen-
dent of the extension of the orthonormal basis {¢;} on U to an orthonormal basis on

U x (—¢,¢€). So extend {¢;} to {¢i(y,a)} on U x (—¢, €) so that A, ¢:(a) = Mi(a)di(a)
(dropping y from the notation). Note that this is not the same #(y,a) as before.
Then for § = 8, and \; = (d/da)|a=oX;, the formula (§A,)d; + Au(5d;) = N+ N6y
at a = 0 yields
((08a)di, di)g = —(0¢i, Adi), + <./‘\i¢ia¢i>g + (Aiddi, i)y
= A\
Combining (4) and (5) gives ‘
I\
Teyll = —= 320

We remark that there may be trouble defining \; where an eigenvalue bifurcates, but
this difficulty disappears when we sum over ¢, so the computation above is valid.

For {(s) = 32;(A;)7%, it is easy to check from (6) that
1 -
Trpll = 555(0).

An infinite dimensional analogue is given in (19).
Now let {¢F} be the frame of T*M dual to {¢;}, and let dvol be the volume form
for (M) at i(x). Then

—TryIl dvol = Z det1/2 ((Lepi, LG NT A N @
= Z det1/2 A¢27¢J>)¢1 A oy,

- Z H)\ V2EEN A B (7)
- _ZH/\ LA O.YP VD W ISR P WD S 1ol S

- HAN? AL AP,



Also, the volume form at F(z,a) is given by

‘ ‘ . 12 ‘
det 1/2<<La¢i, La¢j>> GIN NP = (H /\Z»(a)) GIN . NG (8)
(cf. [12, p. 8]). Combining (7) and (8) gives
—(Tr 11, N) dvol = —TryII dvol = N(dvol). (9)

This is the first variation formula, which is usually written in the global form
—/ (Tr II, N) dvol = N(/ dvol).
M M

We now discuss the effect of allowing the metric g, on M x {a} to vary with a.
Of course, there is no need for this complication in finite dimensions, but it cannot
be avoided in the next section.

So put the metric g, & da* on M x (—¢,€), where go = g. By (4), we have

1 d

2/\2 da

1 d

- 5 Aoz iy P .
QAZ dO{ a:0< ¢7¢>ga

Here A, = L} L,, where L is now defined by
(Lot ¥z, = (&, L3)ga-

Tryll

<La¢i7 La¢i>§a

a=0

Thus | |
[ / S A A2 AD
TI'NII - 2)\i<(6A0/)¢27¢2>g 2)\2 Nab(Aqbl) ¢2
where N, = % go. Thus we can write §y for § = §,. Using A¢p; = N\id; = A, at
0

a=

a =0, we get

1 1
Tevdl = =23 (000 - A7, di)y — 5 37 Nuvs? 9]

1 0
= BT, (SN A, - e dt
2I°(s) /0 To(On )

1 SC a
_5 Z 9bsg Nca¢i Qbi)

s=1

Now set
1 0
= BT, (Sn A, - e dL
CN(S) F(S)/O I‘g( N € ) ot
_ 1 00 _
= 7 ey (On A, - e72)dt
§N(S) F(S)/(; I’g( N € ) 1
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The calculation above gives

TI‘NII = —%(C-N(l) + TI‘(N)),

where (Ngb)s = ¢*°N,,¢" - i.e. N lowers an index by N and raises an index by g¢.
Similarly, repeating the calculation above starting at (4) but now using A,, we obtain

1-
TeyIl = —§§N(1)-

Thus ¢y (1) = (n(1) + Tr(N).

Finally,
. . 1 oo .
Te(N) = Tr(NA™*)| = / 1UTH(Ne™) di
s=0 F(S) 0 s=0
Thus .
TewTl = Cy(1) = Cu(1) + / #UTH(Ne ™) di
F(S) 0 s=0

This formula is the finite dimensional analogue of (25), with the operator B in (25) a
slightly more complicated version of N and the added difficulty that ker A need not
vanish. While it seems unnatural in finite dimensions to work with (x(1), it turns
out to be the natural choice in infinite dimensions.

3 Metrics and diffeomorphisms

In this section we will apply the first variation formula of §2 to the infinite dimensional
situation of the orbits of the diffeomorphism group of a compact manifold M within
the space of Riemannian metrics on M. In particular, we will define what it means
for an orbit to be minimal within the space of metrics, and relate this minimality to
the determinant of a Laplacian-type operator. This is similar to the gauge theory
case considered in [8], [14] and the general theory in [1], but has extra complications
arising from the lack of a natural metric on the gauge group. We also produce several
examples of minimal orbits.

In §3.1, we set up the general theory when all orbits have the same diffeomorphism
type. We will apply this to find minimal orbits of flat 2-tori in §3.2. For other
examples of minimal orbits, we need to treat the case of orbits of varying type. This
is done in §3.3. Finally, in the last subsection we collect some local calculations.

3.1 Global theory

A. Fix a compact n-manifold M. Let M denote the space of smooth Riemannian
metrics on M, and let D denote the group of smooth diffeomorphisms of M. D acts
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on M by pullback: if v € D, g € M, then ¥ - g = ¢¥*g. If we impose standard
Sobolev norms on M, D, then M becomes a Banach manifold and D an ILH Lie
group [16], and the action of D on M is as differentiable as desired. D is also a group
before Sobolev norms are imposed, and once the norms are chosen, composition of
diffeomorphisms produces a diffeomorphism also as differentiable as desired. We will
assume that the choice of norms has been made.

Fix a metric go on M. The orbit O, through g is diffeomorphic to D/S,,, where
Sy 1s the stabilizer of go. As in finite dimensions, it would be natural to assume
that S,, = {id}, so that the map ¢ — *go is an immersion of D in M. To insure
that all orbits are of the same diffeomorphism type, we will assume instead that the
dimension of S, is constant for all g near gy. To make the analogy with §1, we need
Riemannian metrics on M, D. Now M comes with the standard L? inner product.
Namely, M is an open cone in I'(S*T*M), the space of (sections of the) symmetric
two-tensors on M, and the inner product of h,k € T;,; M is given by

(hk)gy = /M(go)ik(go)jlhijkk; dvol,,,

where we follow the convention of writing a global integral in terms of a locally
defined integrand. Here of course go = (go):jdz’ @ dx’? locally, and similarly for A, &,
with (go)" the inverse matrix to (go);;- (In contrast to the gauge theory case, where
M is replaced by a space of connections, this metric is not flat.) D acts on M via
isometries; the geometry of M and the quotient space M /D is treated in [4], [5].

To put a metric on TyD, it is sufficient to put an inner product on 7;;D and then
left translate it to all of D. However, T;;D = I'(T'M) has no natural metric, although
once ¢gq is chosen it has the L? metric

(X, Y )4 = /M(go)inin dvoly,,

for X = X'9;,Y = Y'9;,. We will also call this metric on D just go.

We now proceed as in finite dimensions. We consider a variation F: D X (—¢, €) —
M with F(1,0) = ¢*go. We put the product metric go & da? on D x (—¢, €) and set
L, = dF(id,a):T(TM) — T'(S*T*M). At the point g, = F(id,a), define L., L* by

(Law,n)g, = <waz;n>go = (w, L3Ny,
for w € T(TM),n € T(S?*T*M). Set A, = L. Ly, Ay = L*L,. Of course Ay = A,.

Note that since we must use the product metric as in finite dimensions, we cannot use
the natural operator A, but are forced to use the non-natural A,. Our assumption
on the stabilizer is equivalent to assuming that dim ker A, is independent of o.
Following [1], [14], we now define minimal orbits of metrics by means of (3). We
let {¢;} be a go-orthonormal basis of L?(TM) satisfying A¢; = Ad; = Xip;. As we

will see in Corollary 3.2, A, is elliptic, so such a basis exists for all o, and by standard



techniques can be chosen to depend smoothly on a. We set the zeta function of Ag

to be

C(s)= DA (10)

A0

We similarly define ¢, for A,. This converges for Re(s) sufficiently large, and has a
meromorphic continuation to all of C with a regular value at zero; this follows in a
well known way from the ellipticity of A and the subsequent asymptotic expansion
of its heat kernel. Note that in contrast to the finite dimensional case, the kernel of
A need not be trivial. However, by ellipticity the dimension of the kernel of L and
hence of A is finite, and is independent of g € O,,, since L;g = (di)™' Lydi, for
1: D — D acting by left multiplication. It follows that O, is always a submanifold of
M, and that L} Ly is isospectral to Lj;L;q; in particular, ('(0) for the zeta functions
associated to these operators is constant along orbits.

Definition: The component of the trace of the second fundamental form in the di-
rection N for the orbit of a metric go 1s defined to be

InC(0)
ik (11)

B 1 o s—1 —tA T %
TrNH—lgrll[—m/o 71T, (e AL VL) di —

An orbit O, is minimal if TryII = 0 for all normal vectors N at gq.

REMARKS: Here V is the Levi-Civita connection for the L? metric on M, defined as
usual by

AVY,Z) = X(Y,Z)+Y(X,Z)— Z(X,Y)
+<[X7 Y],Z> + <[ZaX]7Y> - <[Y7 Z]7X>

(cf. [4]). The term VL in (11) equals (d/da)|qa=0 L in a frame in which Vy = dy
(i.e. L is varying). Since we are taking the trace at gy, we may replace A by A in
the integral. However, (,(s) = (.(s), the zeta function for A,, only at a = 0, so
we cannot replace dx((0) by dx((0). Note that (29) shows that (_(0) is smooth in
a under our assumption, so dx((0) makes sense. As is shown below in (19), the last
term in (11) subtracts off a possible pole from the first term, so we can also write

1
L'(s)

Tryll = F.P. [— / T, (e LV iy L) dl
0

oo

where F.P. denotes the finite part. Note that since D acts isometrically, TryIl = 0
for all normal vectors at go iff the same is true at any g € O,,. This is clear for orbits
of isometric actions in finite dimensions, and can be checked by directly examining
the right hand side of (11); an easier proof will be given below.



We now show that the right hand side of (11) is always finite. We have

R
L'(s)

/ 12"V, (e L*V y L)dt
0

1 00
=TT | L Lo e 2 )t
1 - s—1 —Xit ) T * / ,
:_F(S)/O t Ze (L"Vn L, bi)gydl
! s—1 )
_ F(s/ t Ze (VN Ladis Ladi)sudl]|
_ L/oo tS—lze—/\gtN<Laqbi,Lagbi>g dt (13)
2I°(s) A
— 1 o s 1 — At L .
B QF(S / Ze da < a¢27La¢z>gadt
= 1 /OO 15 126—/\1‘ <Z qb ¢> di (14)
QF(S dal, o i) g0
1 e o
=57, ! PR i)l
- 1( / " Trgo((SAa e_m)dt
s)
1-
:_§CN(S)7

where

— 1

CN(S) = F(S) !

I'(s)

/Oo 57 Tr, (§Ae™2)dt = /Oo 5! Trg0(5ze_£)dt.
0 0

Of course, this computation should be read as being valid for Re(s) sufficiently large,
where the convergence of the integrals is easily established. For example, consider
the term Tr, (§Ae™'®) in the last equation. The operator xA - e~ has kernel
(6nA),e(t, z,y), where e is the kernel of e=* | and so has a good asymptotic expansion
as  — 0 (cf. §2.1). Breaking the integral [;° into fj + [ and plugging in the
asymptotic expansion into the first integral shows that this integral exists near zero
for Re(s) sufficiently large. Also, since A = A at gy, Tr(onA - e712) = Tr(L dxL -
e ™™ L §NLT L e‘tz). Now the kernel of Le™2 has exponential decay as t — oo,
since ker A =ker L, and hence so does the kernel of NI - L e A, _On ker L,
(L'6nL - e, ¢) = (6L - e ¢, Loy = 0, and so Try,(6nL - L - e=*) also has
exponential decay as ¢ — oco. Thus the integral exists at infinity. (By (4), (14), the
definition (11) of the regularized trace agrees with the definition in [1, (3.5)].)

To proceed with the proof of the finiteness of (11), we note that by the Mellin

9



transform |

where P is the orthogonal projection of L?(T'M, go) onto the kernel of A; adding in
this projection makes the integral finite near infinity.

/Oo 5! Trgo(e_tZ — P)dt,
0

LEMMA 3.1 (¢f. [14, Lemma 5.5]) For all s € C,
(s = 1)Cn(s) = —dnC(s = 1) (15)

At poles of {y(s), this equation is to be interpreted as saying that the poles of {(s)
coincide with the poles of ((s) shifted by one.

PROOF. By the uniqueness of the meromorphic continuation of {y(s) and ((s), it
suffices to prove the equation for Re(s) >> 0. Under the assumption that dim ker A
is constant, we get

- s—1 foo — K
(5= Dnls) = 5 /0 (N
_ _# o 5—2 - N\ —tA
= ~FeoT /0 2T~ (S D )Y di
_ _# o s—2 —tA
= ~FeT /0 128y Te(e™3) dt (16)
_ _# o s—2 —tA o
= s = 1)/0 t**onTr(e P) dt
= —5]\[?(8 — 1)
Here we have used (5) to write
—1- Trgo(é.NK . e_tz) = —t Z e_/\it<5NK¢i7 ¢Z> = —t Z 6_/\“‘/‘\2'
= Sn(Y M) = GyTr,(e7). (17)
[ |
Combining this Lemma with (11), (13), we get
Tenll = —llim[_éNg(S -, 5N<(0)]
2 s—1 s —1 s—1
— ST Vl 2 a
BN SN OB ESE L )
9 s—=0 s s
1. =

10



In summary, by (12), (14), (2.7), we have

Tryll = %F.P. Cy(1) = %5]@’(0). (19)

It is standard to relate the right hand side of (19) to the regularized volume
element for O, at g,. For ¢; fixed to be independent of a, the volume element to the
orbit at g, is formally

VAet((Ladi, Ladi)g )63 A G5 A ... = \Jdet(Badi, di)g )b A3 A ... (20)
= \/det ongm 992 )QDI A Qb; AT (21)

Since the {¢;} are go-orthonormal (and not g,-orthornormal), it is heuristically plau-
sible that the expression under the square root in (20) should give the determinant
of A,, whereas the corresponding term in (21) should not be thought of as det A,,.
Using the Ray-Singer regularization of the determinant of a Laplacian type operator,
we define (the “Hodge star” of) the volume element to O, to be the nonnatural
exp(—%_;(())), where ( is the zeta function for A. In particular, (19) shows that an
orbit is minimal iff it is minimal among all nearby orbits, provided we assume that
all nearby orbits are of the same type (i.e. all nearby orbits have dim ker L, = dim
ker Lg, or equivalently are diffeomorphic to O, . The point here is that the zeta
function behaves discontinuously in « if the dimension of the kernel jumps, so our
analysis breaks down.) As in [14, Thm. 5.14], we interpret this as an infinite dimen-
sional analogue of Hsiang’s theorem in finite dimensions, which reduces the search for
minimal orbits to checking variations only through orbits, and not through arbitrary
submanifolds.

B. In order to produce examples of minimal orbits, we need to compare (5N?(O) with

the more natural dx(’(0) for two reasons: (¢’(0), although notoriously difficult to

compute, can be handled in some special cases (cf. Theorem 3.2), and Bleecker’s

theorem about critical metrics applies to natural Lagrangians (cf. Theorem 3.5).

Here ((s),(.(s) are defined in the usual way from the nonzero eigenvalues of A, A,.
Looking back at (13), we get

— 1

o = s [

1

oo d
— ts—l -t
I'(s) /0 Z c da

Denote go just by g. Since (d/da)|a=09. = N, we have

(Lpi, Lopi) g, di

<Aoz7 ¢i7 ¢i>9a dt

a=0

d

d
—| (Aabibi)en = -
(Aodi, iYga T

dOé a=0

], (9)st (Ba)dvol(g.)

a=0

11



= /M Nuv? (Aog:)"dvol(go) + /M 9asd? ((§2a)¢:)"dvol(go)
+ [ 961 (B061) (15, N)dvol (g0) (22)

= /M [gbsgSCNca¢?(A0¢i)b + <5Aa¢i7 ¢i>g0
+(tr(N) i, Adi)goJdvol(go).

Define the 0" order operator A on I'(T'M) by A:$%0, + g°*N.,¢*d,. Note that A

lowers an index by N and raises an index by g = go.

Thus
_ 1 o .
§N(3) — F(S)A ts—lzi:e—/\e {<A¢Z’,A¢Z’>g0 + <5Aa¢i7¢i>g0
+{tr(N)pi, Adi) g i (23)
1 S L | - )
- F(S)/o t ;@%,AA@ AQb’i>god7f‘|‘F(S)/O 7 Try, (6A e A)dt

1

° s—1 L —tA
+r(5)/ot Xix%tr(N)Ae i) godt.

Because ¢°°N., = N is a self-adjoint transformation of T'M, A is self-adjoint. Ex-
plicitly, we have

(A0, 0) = [ g™ N0 dvol(go) = [ gy (N2850") dvol(go).

(A™)? = NIGW" = Njy® = (Ay)".

Thus if we set |

=G

/OO I Tr(SA e ™) dt,
0
(23) gives

— 1 %]

Cn(s) = o)+ g [ 67 T(BACT )L,

I'(s) Jo
where B is the 0" order operator on 7'M given by
Bp = A¢+ try, N - ¢.

It is easy to extract from (22) that B is characterized by

L @) = (B G (24)

12



Using (9; + A)e™'® = 0 gives

(n(s) = (n(s)— (Bowe™"2)dt

_ 3_1/t5W (e — P))d1 (25)
= Cn(s)+ m/o 12 Te(Be™™ — BP)dt.

Recall that P denotes projection onto the kernel of A = A; this term is added to
make the integrals converge at infinity so that the integration by parts is valid. By
the remarks after (11) and (14),

1 — 1 1 o
Tmnzippgﬂnz—ppgmu+ﬂ7/ I Te(Be™ — BP)dl
S 0

2

gJ.@@

We now analyze the last term in (26). Let e~'® have kernel e(t,z,y) € T(T,M ®
T,M) with asymptotic expansion

e(t,z,z) ~ Ztk_(n/z)ak(x,x) ast |0
k=0

(n = dim M). Then Be ' has kernel B,e(t,z,y) where B, means B acting in the
x-variable. Thus

Bxe(t7gj7y) ~ Ztk_nthak(x,y) 7

=y k =y

and so for N >> 0,

Be™™® — BP)dt

s=0

- F(ls) /01 = ((i\f: th=/2) /M tr Byax dvol(go)) + O(t") — Tr(BP))dt

s=0

T eI (Be ™ _ BP)d
i ) e a9 _,
1 N [ tr Beag dvol(go) N Tr(BP)
— z " +k—n/24s\ 9
I(s) (Z Fonjzrs 0 -5t @)

{ Ju tr Brayys dvol(ge) — Tr(BP) n even

—Tr(BP) n odd

In particular, the last term in (26) is always finite, so

(2
1
2

1 _
TeyTl = 5 PP Ty(1) = PP Gl +/ tr Bodns dvol(ge) — Te(BP)),
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with the understanding that the integral is zero in odd dimensions. As in (2.7), this
shows that

1
Tey Il = S[6xC'(0) + /Mtr By, dvol(go) — Tr(BP)]. (28)

To sum up, in odd dimensions the nonlocal quantities 5N?(0), dn('(0) differ only by
Tr(BP), and in even dimensions they differ by this term and the integral of a local
expression.

Finally, we discuss the usual volume fixing conventions. As is clear from Lemma
3.2, under a scaling of the metric g —+ Mg, we have A + A72A. This implies that
¢’'(0) — ¢'(0) + 2log A - ¢(0). As in (27),

Jartr a2 dvol(go) — dim ker A n even

¢(0) = (29)
— dim ker A n odd

Thus ¢’(0) is not scale invariant unless n is odd and we are in the “generic” case
ker A = 0, which corresponds to M admitting no one-parameter family of isome-
tries. So in general, we must restrict attention to infinitesimally volume preserving
variations of the metric, or to those directions N with [y, tr(/V)dvol(go) = 0. These
directions need not be normal to O,,. However, writing N = NT 4+ N" in its tangen-
tial and normal components, we have d7('(0) = 0 and so dx(’(0) = dn+¢'(0). Thus
we will restrict attention to normal variations which are projections of infinitesimally
volume preserving variations N, and we still have that an orbit is minimal (among
orbits with such variation vector field) iff 65 (’(0) = 0. The easiest way to arrange
this is to restrict attention to My, the set of metrics on M of fixed volume k; My, is
a codimension one submanifold of M.

There are topological conditions which force all orbits to be of generic type. Of
course, the diffeomorphism type of an orbit O, is determined by the stabilizer S, =
ker L. This is the space of infinitesimal isometries of ¢p, so dim ker L equals the
dimension of the space of isometries of go. If A(M) # 0, then as noted in [9, p.
59], by a result of Atiyah-Hirzebruch M does not admit a circle action, much less a
nondiscrete Lie group of isometries. Moreover, if p;(M) = 0, then there is an infinite
sequence of characteristic numbers which are obstructions to M admitting a circle
action [13].

3.2 Minimal flat tori

We will now determine two minimal orbits of flat 2-tori of fixed volume and show
that one orbit is a stable minimum. This proceeds in two steps: first showing that we
may use the natural (’(0) to compute TryIl, and then using the action of SL(2,7) on

14



the space of tori to find critical metrics for ¢’(0). Finally, work of Montgomery [15]
determines the flat metric for which ¢’(0) is minimal.

As we will see, the dimension of ker A is independent of the flat torus. This
implies that we can use Definition (11) to compute Tryll, since ((0) is a smooth

function of the tori. By (28), Tryll = (1/2)[d5('(0) — Tr(BP)] provided

/ tr Byay dvol(go) =0
M

whenever g is a flat metric on a torus. Of course the variation direction N contained
in the definition of B must be infinitesimally volume preserving—i.e.

/M try, N dvol(go) = 0.

Note that in fact tr,, N = 0; i.e. N is volume element preserving. For if the
torus is given by the lattice spanned by (1,0), (a,b), then the volume form for the
coordinate chart z — = + ay,y — by is bdx A dy and the volume of the torus is of
course b. Thus the condition dxb = 0 is equivalent to both volume preserving and
volume form preserving.

PROPOSITION 3.1 On an n-manifold M, Tr(Be™'®) has an asymptotic expansion
Tr(Be_tA) ~ Ztk_(nﬂ)/ b(z)dvol.
k=0 M

On flat even dimensional manifolds, b, () = 0.

Of course, by(z) = Bgay(x,y)|s=y, so the existence of the asymptotic expansion
will follow from that for e™*2; this in turn is immediate from the ellipticity of A,
which we will show in §3.4 along with the proof of Prop. 3.1.

COROLLARY 3.1 For volume preserving variations of flat 2-tort, Try 1l = (1/2)(dn('(0)—
Tr(BP)).

Proor: It is standard that

1 %]
EITH(Be ) dl| = [ b(a) dvol
F(s)/o r(Be™?) . () dvo
on a 2m-manifold. By the Proposition, b; vanishes on a flat torus. |

We next show that Tr(BP) = 0. Complex structures on S x S! are parametrized
by the upper half plane H, where the point 7 = (a,b) corresponds to the torus
associated to the lattice generated by (1,0), (a,b). Two structures are isomorphic iff
the lattices differ by an element of SL(2,7) or a homothety. Conversely, a flat torus
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comes from a lattice and so gives rise to a complex structure. However, a homothety
of a lattice gives rise to a flat torus with a scaled metric, so these tori are not isometric.
Thus tori of fixed volume are in one-to-one correspondence with H/SL(2,7).

Fix (a,b) € H. For the associated torus T(Z,_Lb) with coordinate chart [0, 1] x [0, 1] —
Ta, (z,y) — (z + ay, by), the metric takes the form

9= (0 o)

since 0, = 7,0, = ai' + bj, where {7,7} are the standard basis of R% To show that
Tr(BP) = 0 for all tangent vectors N at (a,b), it suffices to consider the cases where
N is a vertical vector or a horizontal vector. (We avoid naming these vectors to avoid
confusion with d,,d, above.) Consider first a horizontal vector N. When we vary the
metrics in the a direction, the variation two-tensor for the metrics is

0 1
N_(l Qa)

(The trace of N is nonzero because we are not working in an orthonormal frame at
a point.) It is easily seen that the kernel of A is two dimensional on T{,p), since
the group of isometries of T, consists of translations and possibly a discrete group of
rotations. In particular, {J,, d,} span ker A. The L? inner products of this basis are
given by

(0,,0,) = b, (0,,0,) = ab, (0,,0,) = (a* + b*)b.

(For example,

(0:,0,) = |

[0,1]x[0,1]

gz](ax)l(ay)] dvol = / g12b dxdy = ab)

[0,1]x[0,1]

Thus an orthonormal basis of ker A is given by {b='/20,,b7%/%(0, — ad,)}. As before
Tr(BP) contains two terms, one of which as before involves tr N and so vanishes.
The other term contributes

1 1
Te(BP) = Z<Baz,a$> + b—3<B(8y — ady), 0y — aly)
1 .
= - gilglchaéladVOI
b J[o,11x[0,1]
1 . .
_ ; 20N0a52a o chcagla d 1
+53 /[OJMOJ]M[Q a(g )]dvo
a . .
_ ; Zcha(SZa o chca(Sla d 1
7 /[0 1]X[071]91[g a(g )]dvo
! / Ny 4 - [ Nm—ag) = [ (N —ay)
b Jo,11x[0,1] T g3 [0,1]x[0,1] 22 2 b2 Jjo,11x[0,1] 2 M
= 0
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since Ny;; = 0.

For a vertical vector N, we not only alter b but also rescale the torus to fix
the volume. Thus for ¢ € [0, €] we consider the torus with chart given by (z,y) —
(1 = t)~ Yz + ay), (1 — t)by); this is the torus of volume b associated to the point
(a,(1—1)*b). (We use (1—1)? rather than 1—¢ to avoid square roots in the calculation.)
Now 0, = ((1 —¢)74,0),9, = ((1 —t)"a, (1 — ¢)b), so

1—1

1 (] )2
(9:) = ( El _ tg_Qa El — t§—2a2 + (1 — )% )

2 2a
N_(Za 2a2—262)

Thus

and

Te(BP) = %<B8$, 0, + 61—3<B(8y — ady),d, — ady)

1 1 a
- - N —/ Nys — al ——/ Nyy — aN
b J[0,11x[0,1] 11+b3 [0,1]><[0,1]( 2 — i) b3 [0,1]><[0,1]( 12— Vi)
=0

These cancellations indicate that a second proof that Tr(BP) = 0 can be obtained
by mimicking the proof in Theorem 3.5 below, replacing G by R?, GG/ H by the torus,
and using the G invariance of the flat metric. We leave this to the reader. In any
case, we find that for volume preserving variations of flat tori,

1
TI’NII = 55]\[(’(0) (30)
This natural equation determines two flat tori whose orbits are minimal.

THEOREM 3.1 The orbits of the flat tori associated to the lattices (1,0),(0,1) and
(1,0),(1/2,4/3/2) are minimal within the space of all flal melrics of fived volume.

PROOF: The points (0,1),(1/2,v/3/2) are the only points in the upper half plane
with nontrivial stabilizer for the action of SL(2,7), and the stabilizer subgroups are
isomorphic to Zy, Z3 at these points, respectively [18, Ch. VII]. The differential of the
action of a generator of the stabilizer groups therefore acts via rotation of m,2m/3
at the two fixed points. Since the action is by isometries, it must take the gradient
vector of ¢'(0) to itself. Thus the gradient vector must vanish at these two points—i.e.

5NC/(O) = 0. [ ]

The proof above is a (trivial) example of Palais’ symmetric criticality principle;
Hsiang’s theorem is a nontrivial example [17].
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We can obtain more information about the orbit at (1/2,1/3/2) by computing
((s) in terms of the Epstein zeta function for the dual lattice of the torus. Recall
that the dual lattice L* to a lattice L in R? is given by the set of z* € R? such
that (x*,2) € Z for all € L. It is shown in [2, Ch. II1.B] that the spectrum (with
multiplicity) of the Laplacian A° = —¥°?_ (9/dz;)* on functions on the torus is
given by {4n?|z*|*:2* € L*}. If L* is spanned by a* = (1,0),5* = (b1,by), then for
2* = ma* + nb*, [2*|2 = m? + 2bymn = (b3 4 b3)n* = f(m,n). Thus

xo9) = (1) T - (1) et

where the last term is by definition the Epstein zeta function of the lattice L*.

PROPOSITION 3.2 Let (g(s) = (g r+(s) denote the Epstein zela function associaled
to the lattice L*. Then the zeta function for A for the torus T? associated to the lattice
L salisfies

C(s) = (1+27")(47*) 7" Cu(s). (31)
PROOF: The eigenfunctions for A° are given by

fuly) = 27

for z* € L* [2, Ch. IIL.B]. Thus any function f € L*(T}) can be expressed as
Fy) = ) e forly):
r*el*

2

A smooth 1-form u = u;(z)dz" has the decomposition
i=1

Ui (Y) = Vprers Gox for (y)
{ Uz(Y) = Cpwers box for (y) (32)

By the local expression for A given in Corollary 3.2, the eigenvalue equation for A

(Au); = — [22: %Zj + a% (22) g“’fﬂ — ;. (33)

=1 =1 s

becomes

Substituting (32) into (33) yields

Z 47T2(|$*|2a%az*+aﬁbz*)fz* = )\Zaz*fz*

z*elL*

S an

r*EL*
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where z* = (a, 3). Setting ﬁ = u, we find that the eigenvalue X satisfies
2P —a® —p af
=0
af |2*[* = 3% —
Thus we have
o= [, 20
Note that the zero eigenforms of A form a two dimensional space, agreeing with our

earlier computation.
In conclusion, the zeta function of A is given by

1 ° 1 3
Dy
I*EL’;(0,0)} |z*|24m2 8m2|x*|?

- (1 + Qi) (47%)~ Ca(s)

The value of (j(0) is given in terms of the Dedekind eta function [11, Ch. 20].
However, it seems difficult to determine lattices for which (5 (0) is critical this way.

Since the volume element is formally given by the (square root of the) determinant
of A, by (19), (30), it is natural to measure the stability of a minimal orbit by the
second variation 03 5, det A. For flat tori, by (19), (28), Z/(O) and ¢'(0) differ by a
constant, so we may measure stability by 5]2V7M det A. We will say that a minimal

orbit is stable if 63 3,¢'(0) > 0 for all N, M.

THEOREM 3.2 The orbil of the flat lorus associaled to (1/2,7/3/2) is stable within
the space of flat tori of fized volume.

PROOF: Set &(s) = (g(s)I'(s)(2m)~%. By [15, p. 75], £(s) has a minimum at the torus
associated to (1/2,/3/2) for all s € (0,1/2). (This uses the fact that L* = L for this
lattice.) Thus 0 < 6% 3/&(s) for all s € (0,1/2). Substituting (31) for (z(s) gives

(4m)°
0 = S ovalC(s)I(s))

= U 5r(0) + 55 0) 4 0L 414 0(s2)
= (5 a(0) 4 0(5)).

Here we have used ((0) = —dim ker A = —2 for all flat tori. Letting s go to zero
gives 0 < 6% 5,¢'(0). |

The same argument for first variations gives another proof that this torus gives a
minimal orbit.
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3.3 Orbits of varying type

While the case of generic orbits (and more generally families of orbits of fixed type)
treated in §3.1 is easiest to handle, minimal orbits often occur outside these cases.
In particular, in finite dimensions, it is an easy corollary of Hsiang’s theorem that
orbits of isolated diffeomorphism type are minimal submanifolds. The proof uses the
exponential map, which may not be available in our context. We now discuss how to
handle orbits of varying type in infinite dimensions. The main results are that orbits
of isolated type are minimal (Thm. 3.3) and that isotropy irreducible homogeneous
spaces with invariant metrics are minimal (Thm. 3.5).

Let A = )¢ be the first nonzero eigenvalue of Ag. There is a neighborhood of
0 in (T,,Oy)* such that A/2 is not in the spectrum of A, ;x for all N € U. For
Go = go+aN (N € U,a € [0,1]), let P = P, be g,-orthogonal projection into the
sum of the eigenspaces of A, with eigenvalues less than /2. Following [14, (5.17)],
for T > 1 set

_ _ 1 T — 1 oo _
Cr(s) = Crals) = F(s)/o 157 ey, (7)) dt + 0s) /T 1#= 1T, (e HBa=Pa)y gy

Both integrals are now smooth functions of a. Note that ((s) = ((s) if dim ker A
is constant near go.

We have
= = 1 o s—2 —tA
1 o s—2 —tA
TG /T t*720nTr(e™™2) dt
_ 1 &0 s—2 —tA
= 7“8 Y /0 =265 Tr(e™2) di
1 % 2 —1(B-P)
—|—7F(S 7 /T t*72onTr(e ) di
o 1 o s—2 —tA
7“5 Y /T t* 720N Tr(e™2) dt
= 1 ° 52 —t(A-P)
— (s —1)Th(s)+ m/T 17265 Te(e ) dt
o 1 o s—2 —tA
7F(s Y /T t*2onTr(e™2) dt

Here we have used the part of (16) which does not assume that the kernel has constant

dimension, and we recall that dyTr(e~') has exponential decay at infinity by the
remarks after (14). Thus

SnCr(s—1) = —(s — 1) n(s) — ﬁ /TOO 725N Ty, (Pe™™2)dt. (34)
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Moreover, the last term in (5(s) is zero at s = 0, while plugging in the asymptotics
for Tr(e™*2) into the first integral yields

Jutran/s noeven

Cr(0) = ¢(0) + dimker A = {
0 n odd

We now extend the definition of TryII for orbits of arbitrary type.

Definition:
. o - SnCr(0)
Teall = lim |— / P (67BN L)dt — 5T
W 15%[ I(s) Jo o (€ VB = 50T
i 1 oo N Sn(C(0) 4 dimker A)
— lim |- / BT (e B LAY L) di .
13%[ T(s) Jo o (€ wL)dt+ 25— 1)

As before, we may replace A with A. Since (13) is unchanged, by (34) we get

_ 1. —5NET(5_1) 1 2 o, —tA
Teyll = _glﬂﬁl[ - +(5—1)r(s—1)/T 1285 Tr(Pe5)dt
SnCr(0)
+= (35)

_ l = _l < o, —tA
= 0nCr(0) Q/Tt SyTe(Pe™)dt.

(It is shown in [14, p.200] that (SNTI‘(FG_tK) has exponential decay at infinity.)

THEOREM 3.3 An orbit O, of isolated diffeomorphism type is minimal.

PROOF: The isometric action of the stabilizer S, on M induces an action on 7,,O,,,
still given by ¢ - v = ¢*v, which is easily seen to be unitary. Thus S, acts unitarily
on X = (T,,0,)*.
Since M is compact, S,, is a compact Lie group, so X splits into a sum of finite di-
mensional irreducible representations X; of S;,. On each piece we can define Tr II| =
X;
>i(Trn, IT) N, where {N;} is an orthonormal basis of X;. Tr II

is of course inde-
X

= 2i(Tragv) I do(N;).

B

But by (35) TryIl = Tregnl, since A stays isospectral under the action of ¢ (cf.
[14, (5.23)]). Thus Tr 1| s fixed by Sy, i.e. Tr II| = do(Tr 11} ).
X

b b %

pendent of the choice of this basis, so for all ¢ € S,,, Tr Il
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If O, is not minimal, then Try,II # 0 for some Ny € X, and hence on some
neighborhood of Ny in X. The vector space spanned by the {N;}, ¢ = 1,2,...,

is dense in X, and so Tr II| # 0 for some ¢. (If we knew that N — Tryll were
X;

continuous in N, then from Try, Il # 0 we could directly conclude Tr II] # 0 for
some 1.) ‘

Set Tr II] = A. We now claim that the orbits O, 4.4 are diffeomorphic to O,
for all € > 0; this contradicts the isolation of O, . Note that for all ¢ € D

d

To ¢7go + 9" A = ¢7A,
(8]

dg(A) =

* A) = —
a:0¢ (90 + o ) do "m0
s0 ¢*(go + €A) = ¢*go + edp(A). Thus Oypea = Oprgotep(a). Also, since dp(A) = A,
we have ¢*(go + €A) = go + €A iff p € S,,. Thus Oy 1ca = D/Sy, = O,. |

THEOREM 3.4 The orbits of the following metrics are minimal within the space of
metrics of fired volume:

(i) the standard metric go on S™;

(ii) the standard metric g; on RP".

Consider the product metric ds* & go on S' x S™, where [q ds* = 2m. Consider
the space M’ of all metrics on S x S™ except diffeomorphism orbits of melrics eds® @
€'y, for e > 0. Then the orbit of ds* @ gq is minimal within M'. The same statement
holds for ds* @& g, on S' x RP".

PrOOF: S and RP" with their standard metrics are the only compact n-manifolds
of fixed volume with isometry group of dimension n(n + 1)/2 [9, Thm. 3.1]. Thus
these orbits are isolated. S! x S, S' x RP", with metrics ads? @ Bqo, ads® @ Bgi, are
the only compact n 4+ 1-manifolds with isometry groups of dimension %n(n +1)+1
[9, Thm. 3.3]. If we set @« = 3 = 1 and exclude other metrics of the same volume,
then these orbits are minimal. |

We now produce a much larger list of minimal orbits (including the standard
metrics on symmetric spaces) by replacing the nonnatural (;(s) with its natural
analogue.

Let Ao be the first nonzero eigenvalue of Ag, and let P = P, denote g,-orthogonal
projection into the eigenspaces of A, lying below Ag/2. Set

(r(8) = (rals) = (e

/tﬁ Iy, (e7HBa=Fa)yqy
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For « close to zero, both terms on the right hand side are smooth in . By (25) and
(34), we get

OnGr(s—1) = —(s =1)Cn(s) — ﬁ/ 726N Try, (Pae™"2e)dt

— (s —1)[Cn(s) - r(s = /0 12 Tr, (Be™ — BP)dl]

/ t* 728N Try, (Pae_m“ )dt

_r( S
- s—1 s—2 —tA
— SnCrls — oD / 12 Tr, (Be~™ — BP)d
+r Y / 15728 [Ty, (Poe™3%) — Tr, (Pye=t2a)]d.

Thus by (35) (and omitting the a’s),

o 5N§T(5 - 1) 1 0 s—2 —tA
Teyll = __Ll l e 1)/0 12 Tr, (B~ — BP)dl
+5NZT<0)]
s—1
—% [ 78T (P ) = T, (P (36)

1 foo — _
—§/T 17 8N Tr,, (Pe™™)dL.

We now make the third term in the above limit more natural. We have

PRI 1 _ 1 < s2 PetA
]:g_T(l ) T os—1 [_(5 — 1)Cw(s) 821_F(s - 1) /T 0 Ty (P2l s=1]
— - i 1 l_(S — 1)CN(S) SZI—IE 3 _1) /OOO ts_zTrgo(Be_tA - BP)dt s=1
1 s—2 B,.—tA
T e T (P ] |

is finite, so
s=0

Now we know ﬁ Joo 71 Tr(Be ™ — BP)dt

s—1 o0
——— | ¢**Te(Be ™ - BP)dt| =
F(s—l)/o r(Be ) s=1 0
Thus by (34) for (r(s),
InCr(0) 1 [ 1 52 —tA ]
T —{dntr(s - 1) 5:1+r(3—1)/ PR T, (P
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- /Oo 17 SN Tr,, (Pe™™)di
T

) 00 0o .
= NgT(lo) —I—/ t_15NTrga(Pe_m)dt —/ t_lcsNTrgO(Pe_m)dt.
5 — T T

Substituting this into (36) yields

lim

Tenll = _% ﬂ[—&v@(s—l) +6N4T<o>]

s—1 s—1
1
2I°(s)

1 e - -
—§/T t7 6N Ty, (Pe™2)dt.

/ Ve, (Be~™ — BP)d
0

s=0

Plugging in the Taylor series for (r(s — 1) near s = 1 as before gives

1 1 e
Tenll = =8 ’0——/ 1Ty (Be™'™® — BP)dt
I'n 9 NCT( ) QF(S) 0 rgo( € )

s=0

1 oo _
—§/T 17185 Tr,, (Pe~"3)dt. (37)

Recall that a homogeneous space G/H 1is called isotropy irreducible if the lin-
earized isotropy representation of the identity component of H on Tj4(G/H) is irre-
ducible. A complete list of simply connected examples other than symmetric spaces
was given by Manturov, Wolf and Kraemer, see e.g. [10],[19].

THEOREM 3.5 Let M = G/H be an odd dimensional simply connected isolropy irre-
ducible homogeneous space with its G-invarianl metric go of volume 1. Then O, is
minimal within the space of all volume one metrics.

PROOF: In odd dimensions, we have by (27) and (37)

1 1 1 feo —
Tell = SOnGr(0) + S T(BP) = 5 [ T 17 N Te(Pe S,
T

Now (r4(s) is a natural Lagrangian in the sense that it depends naturally on the
metric g, except for the term P,, which depends on the nonnatural )\g. However,
thinking of Ag as just a universal constant shows that (r,(s) is a smooth natural
Lagrangian for metrics g, near go. (It will fail to be smooth for metrics on manifolds
with Ag/2 in the spectrum of A.) This is enough to apply Bleecker’s theorem [3] that
invariant metrics on isotropy irreducible homogeneous spaces are critical for natural
Lagrangians. (In brief, the gradient vector for this Lagrangian at go will be a G-
invariant symmetric two-tensor on GG/H and so by hypothesis will be a multiple of
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the metric. Since we consider metrics of fixed volume, this multiple must be zero.)

We conclude that dy¢;(0) =0 for all N € (T,,0,,)*. Thus for these N,
1 — 1
Teyll = STe(BP) - 5 hm/ N Ta(Pe ) dt = STe(BP),

We now show that Tr(BP) = 0. By [19, Thm. 17.1], the identity component of
the isometries of G/H is given by multiplication of cosets by elements of G. (For
ST = Spin(7)/Gy = SO(8)/SO(T), we choose G = SO(8).) If {p;} is an orthonormal
basis of g, the Lie algebra of (7, then ker A is spanned by {P;}, where (P;),n =
(d/dt)|s=o(expg tpi)gH. This basis is L*-orthonormal, as

(P, P5) = /G/H<(d/dt)|t:o(eXpGtpi)gH, (d/dt)|izo(expg tp;)gH )ymr dvol
_ /G /H<(d/dt)|t:o(expc; tp:), (d/d1) im0 (expe tp;)) i dvol

= ,/G/H<pi7pj> dVOl = 52’]’

by the G-invariance of the metric.
Tr(BP) has two terms, one of which is the trace of the pointwise multiplication
by tr(N). This terms contributes

/G/H S (N, £2) dvol = (dim ) /G/H tr(IV) dvol = 0,

since N is infinitesimally volume preserving. The second term A contributes
L3 gung Newsi 7 dvol,
G/H <

if P, = ¢%0, locally. At a point we can of course take d, = F,, in which case
gi; = 6ij, P* = 6% and the integrand becomes Y_; N;; = tr(N). Thus the second term

K
also contrlbutes Zero. [ |

REMARK: From the proof we see that 0 = TryIl = —1 [7° t_15NTr(Fe_tK), which

implies that (SNTI'(FG_tK) = 0. Thus gy is critical even for this nonnatural Lagrangian.

3.4 Local Computations

In this subsection we will produce the asymptotic expansion for e ™4, e~"3. Of course

the existence of the asymptotic expansion is immediate once we check that A, A are
elliptic (Corollary 3.2).

So fix a metric go with associated Levi-Civita connection ¥V and Ricci curvature
tensor Rwd;z; ® dx’; we raise and lower indices using go. Pick u = v'9; € I'(TM),w=
wapdz® @ dzb € F(SQT* ). Recall that we compute L, A with respect to another

metric g. Set pg = /det go, p = /det g.
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LEMMA 3.2 In local coordinates we have
(Lu)ab = (Vau)b + (Vbu)a
(L*'w)* = —2Viwi
(f*w ¢ = —Z(QO)QUﬂVE’wbu

Ho

)
)

2

Au)* = =2((V*Vyu)* + (V*Viu)’ 4+ Riu)
Au)' = —2(g0)" L (VEViu)s — 2(g0)" (Y, Vi) + 2(g0) ™ L Ry,
Ho Ho Ho

o~~~

PROOF: For completeness, we include a proof of the well known first statement [9,
I12]. Given a vector field X, let Lx denote Lie derivative. Define a derivation on
tensors by Ax = Lx — Vx; on vector fields we have AxY = —Vy X. Let ¢; be a
family of diffeomorphisms of M with ¢ = Id, (d/dt)|i=0¢: = u. Since the metric is
parallel, we get

s = (G]t9) @00 = c@n.00

t=0

= (Aug)(0a; 0b)
= AU(g(aavab)) _Q(Auaaaab) _g(a(MAuab)
= g(vauvab) +g(aa7vbu)a

since A, vanishes on functions. The last line equals
(Vo) gin + (Vo) gia = (Vau)y + (Vyt),.
For the second equation, we have
(Lu,w) = /M<((Vau)b 4 (Vitt)a)Ba ® Oy, weads © ) dvol
= /M((Vau)b + (Vbu)a)w”‘b dvol
= —2/ up V40 dvol
M
= =2 [ u.Va(wig™) dvol
U (wpg™®) dvo
= —2/ Ueg™V w05 dvol
M
= —2u, ¢V,

Thus (L*w)* = —Qwag.

For the third equation, starting as above we get
(Lusw)y = [ (Vawh+ (Vo) Jouag™g™ dn
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= —2/ Ugg” Vcwgbg”“b dpu

= —2/ C‘fvc% du

= -2 / (90) st (90) " g°V cwpo = dpig
Ho

= (u, —Q(QO)MQCZVCLUZU£>.

Ho
Thus
(L w)" = —2(g0) Vi
Ho
For the fourth equation, we compute
(Au)" = =2V*((Lu);) = =2V"(¢"graVu" + g"°g.aV3)

= 2V Vu? + Vyu) = —2(VPVpu' + o V' Vu?)
= V'V + goa(VV' + RP)u? = —2(V Vyu" + V'V’ + Riub).

We leave the proof of the last statement to the reader. |
The following is a straightforward consequence of the Lemma.
COROLLARY 3.2 The symbol of A is given by

o(A) = =2(po(z, &) + pi(z, &) + pa(z, €))

where p; (1 =0,1,2) is homogeneous of degree 2 — i in & and is given by

pae,€) = (|66} + €5
pi(w,6) = i[3g" T + g Tl 608 + g Th & + g™ L6
po(,€) = —[g"™ark + gMorn, — g T + g TR, + RY.

In particular, A is elliptic. Thus A = A, is elliptic for a close to zero.
Note that the principal symbol of A is not scalar as for usual Laplacians.

PROOF OF PROPOSITION 3.1: By the ellipticity of A and [6, Lemma 1.7.4], Tr(e™'2)
has an asymptotic expansion Y. Axt*~*/?) and hence so does Tr(Be™ ™)
the coefficients A are integrals [y, ap of polynomials in the jets of the symbol of
A. Since these polynomials are independent of coordinates, by a standard argument
the a; must be polynomials of curvature expressions and their covariant derivatives
(and constants). In particular, the asymptotic expansion of Tr(tr(N)e™*?) is just

S Bet" "2 where By = [y tr(N)ay. For the term b,/;, a homogeneity count

. Moreover,

shows that no constant terms appear. Similarly, for the term A in B given before
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(25), the asymptotic expansion of Tr(Ae~*) has coefficients which are integrals of

expressions involving N and curvature terms. The important point here is that no
derivatives of N occur [6, Lemma 1.7.7]. Thus if R denotes a generic curvature term,
b, /o will also contain terms of the form tr(N)R, as well as terms given by contracting

indices in NV against indices in R and then contracting all remaining indices. |
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