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Abstract

We construct Chern-Weil classes on infinite dimensional vector bundles with struc-
ture group Cly(M, E), the group of zeroth order invertible classical pseudo-differential
operators acting on a finite rank vector bundle E over a closed manifold M. CI§(M, E)
is the structure group of geometric bundles naturally associated to loop spaces of Rie-
mannian manifolds. Mimicking the finite dimensional Chern-Weil construction, we
replace the ordinary trace on matrices by different linear functionals on the Lie algebra
of Cl5(M, E). We use (i) traces built from the leading symbol, and (ii) a linear map
which considers all terms in the asymptotic expansion of a heat kernel regularized
trace. For a specific bundle on loop spaces, the first approach yields non-vanishing
Chern classes in all degrees. The second approach produces connection independent
cohomology classes under stringent conditions. For the tangent bundle to a loop
group, the first method gives a vanishing first Chern class, while the second method
recovers the first Chern class investigated by Freed, and explains why this class is not
connection independent.

1 Introduction

Infinite dimensional vector bundles with connections are frequently encountered in mathe-
matical physics; basic examples include the tangent bundle of loop spaces [6] and infinite
rank vector bundles associated to families of Dirac operators [4]. In this paper, we construct
Chern forms and Chern classes for a class of vector bundles including the tangent bundle
TLM to a loop space LM, and produce examples of non-vanishing classes. In light of
Freed’s curious example [6] of a connection dependent first Chern form on loop groups, an
impossibility in finite dimensions, it seems worthwhile to examine extensions of Chern-Weil
theory to infinite dimensions.

In contrast to finite dimensions, on infinite dimensional bundles one first has to choose
the topology on the fiber and determine a structure group. One obvious choice, modeling
the fiber on a Hilbert space H and the structure group on GL(H), leads to a trivial theory
by Kuiper’s theorem [10]. Since a direct topological approach to characteristic classes seems
difficult, we follow the geometric approach of Chern-Weil theory, which both historically
preceded topological approaches and is perhaps more elementary. In our approach, we
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assume that our infinite dimensional bundle £ has (i) fibers modeled on the space of sections
of a finite rank bundle E over a closed manifold M, in either a Sobolev or C'*° topology, and
(ii) a connection whose connection one-form takes values in Cl<y = Cl<o(M, E), the space
of classical pseudo-differential operators (PDOs) of nonpositive order acting on the fibers.
As in finite dimensions, Cl< should be the Lie algebra of the structure group. In our case,
the structure group is therefore CIj, the space of zeroth order invertible (and hence elliptic)
UDOs on sections of E. This framework includes the case of TLM [13].

Chern-Weil theory produces characteristic classes from invariant polynomials on the Lie
algebra Cl<(. Avoiding the difficult question of determining all such invariants, we focus on
those polynomials which produce the Chern classes in finite dimensions, namely Tr(A*A),
the trace of exterior powers of a matrix. However, powers of the curvature need not be
trace class for our structure group. One main topic of the paper is the investigation in
§3 of alternative traces on Cl<y. One of these traces, the leading symbol trace, produces
nonvanishing Chern classes.

In general, the leading symbol trace picks out the leading term in the asymptotic ex-
pansion Tr(Qe @), where Q is the curvature of the connection and @ is a generalized
Laplacian on the fibre, while the weighted traces of e.g. [18] pick out the finite term. As a
second main topic, in §4 we show that certain asymptotic coefficients are closed, and that
the corresponding cohomology classes are independent of the connection under more strin-
gent conditions. Thus, in contrast to finite dimensions, it is qualitatively harder to show
that characteristic forms are connection independent. In fact, Freed’s example occurs as an
asymptotic coefficient which is closed but does not satisfy the stringent conditions. Thus
both the leading symbol traces of §3 and the results of §4 give extensions of Chern-Weil
theory that improve the weighted trace approach of [5, 14, 18].

In more detail, in §2 we review classical Chern-Weil theory, with an emphasis on traces
as morphisms A : Ad P — C from the adjoint bundle of a principal bundle P to the trivial
C bundle. Here the structure group and the base may be infinite dimensional, and we
are thinking of P as the principal bundle associated to £. These morphisms A produce
characteristic forms and classes as in finite dimensions (Theorem 2.2).

In §3, we introduce two types of traces in infinite dimensions, each of which can be
interpreted as generalizations of the ordinary trace on matrices. The first example is the
Wodzicki residue, the unique trace on the space of classical YDOs. However, we show in
§3.1 that the associated Chern forms vanish on loop groups, confirming results in [14]. We
produce more interesting examples by noting that the Lie algebra of the structure group
Cly admits a family of “symbol traces” of the form A — A(0§'), where o' is the leading
symbol of A and A is a distribution on the cosphere bundle of M. In the main section §3.2,
we show that the associated Chern classes are non-zero in general for the structure group
of loop spaces (Theorem 3.3). We also present evidence that, despite appearances, these
classes are not given by integration over the fiber of Chern classes of a finite dimensional
bundle.

In §3.3, we relate the symbol traces to regularization techniques familiar in statistical
mechanics. In particular, in certain cases the symbol trace A?(cd') equals the leading
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term in the asymptotic expansion tr(Ae ¢9), where A® is a distribution associated to a
generalized Laplacian @) (Propostion 3.4). This applies to loop spaces: @ = D*D at
the loop v, with D covariant differentiation in the direction 7 along . We also build
characteristic classes from symbol traces on the smaller algebra Cl<, of ¥DOs of order at
most p for p < 0, and discuss their dependence on the choice of connection (Theorem 3.6).
This is relevant to the loop group case, as the Levi-Civita connection one-form takes values
in such an algebra.

In 84, we extend the discussion of §3.3 to relate symbol traces to other terms in the
asymptotics of tr(Ae~*?), and in particular to the finite part. This finite part regulariza-
tion of tr(A) is well known in the physics literature, but the corresponding Chern-Weil
construction (i.e. replacing A by powers of the curvature form €2) does not produce closed
forms in general because of the () dependence.

To analyze this difficulty, we consider the entire asymptotic series
tr@(QF) := tr(Q*e*?) as a 2k-form with values in the sum of (i) a formal Laurent series

1

in e¢ (for some ¢ € N) and (ii) loge times a power series in €. We modify the given
connection V on £ to a connection V@ with connection one-form taking values in the
power series ring Cl<[[¢]]. We use V@ to determine which coefficients of tr@(Q*) are
closed (Theorem 4.4), and when their cohomology classes are independent of the connection
(Theorem 4.6). Roughly speaking, the number of coefficients which are closed grows linearly
in —d := —ord([V, @]). Thus, the more (covariantly) constant () is, the greater the number
of closed forms. For example, when d < ord(Q®) as for loop groups, the coefficient of the
most divergent term is closed; for £ = 1, this coefficient is precisely the first Chern form
considered by Freed. The number of coefficients whose cohomology class is constant for
a family of connections V, also depends linearly on —d, provided the order of %Vt is
sufficiently smaller than d. From these theorems, we can see precisely why Freed’s first
Chern class is connection dependent.

The second author would like to thank Université Blaise Pascal for its hospitality during
the preparation of this article. Conversations with Simon Scott on this subject are also
gratefully acknowledged. We also thank the editor and a referee for helpful comments, and
in particular for the referee’s simplified proof of (4.4).

2 Chern-Weil calculus

In this section, we review finite dimensional Chern-Weil calculus as in e.g. [3] and check its
extension to the infinite dimensional setting. We emphasize the role of linear functionals
on the Lie algebra of the structure group, as the choice for functionals is the main topic of
§3.

Let B be a finite dimensional manifold, G a Lie group and P — B a smooth principal
G-bundle. A smooth representation p : G — GL(W) of G on a finite dimensional vector
space W induces an associated smooth vector bundle W := P x, W — B. In particular,
the adjoint representation p : G — Aut(Lie(G)) determines a bundle Ad P.

This framework extends to Kriegl and Michor’s “convenient setting” for global anal-
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ysis [11], which includes principal bundles for regular Fréchet Lie groups G over Fréchet
manifolds. We will work with the space Clj of invertible zeroth order YDOs acting on
smooth sections of a vector bundle over a closed manifold M. The Fréchet topology on
Cly is induced from the standard Fréchet topology on the coefficients of the homogeneous
symbols o; of a DO T and the C* topology on the smoothing part T — Y, 0;. (The o;
and the smoothing part depend on the choice of a partition of unity on M and a cutoff
function in the cotangent variables, which we make once and for all.) This puts a regular
Fréchet Lie group structure on Clj.

We briefly recall the geometric constructions we need in the Banach and Fréchet set-
ting, referring the reader to [11] for details. The finite dimensional constructions must
be modified, as a representation G — GL(W) fails to be continuous in any reasonable
sense once G and W are infinite dimensional. Indeed, GL(W) cannot be equipped with an
appropriate Lie group structure. If G' is Banach and W is either Banach or Fréchet, one
does not expect GL(W) to be a Lie group for the topology in which the representation is
expected to be continuous. If W is Frechet, GL(WW) is never a topological group unless W
is Banach space, in which case it is a Banach Lie group in the operator norm topology [15].

To circumvent these difficulties, one works with the group action associated to a repre-
sentation [11, §49.1]. In more detail, let G be a regular Fréchet, resp. Banach Lie group
with Lie algebra A, and let P — B be a smooth principal bundle equipped with a con-
nection given by a Lie algebra valued connection one-form w € Q!'(P, A). Let W be a
Fréchet, resp. Banach vector space (and therefore a regular space in the sense of [11]).
A representation p’ of G on W which induces a jointly smooth map p: G x W — W,
p(g, w) = p'(g9)(w), determines an associated vector bundle W := P x,G — B [11, §37.12].
Note that the associated bundle is constructed just as in finite dimensions, but the smooth-
ness requirement of the representation has been restated. The space Q(B, W) of W-valued
forms on B can be identified via a canonical isomorphism with the space (Q(P) @ W), of
basic forms on P with values in the trivial bundle P x W [11, §37.31]. Recall that a form
is basic if it is G-invariant and horizontal. Moreover, the connection one-form w on P with
curvature form QF € Q?(P, A) induces a covariant derivative V on smooth sections of W
[11, §37.26], and its curvature "V € Q%(B,Hom(W)) is related to QF via the canonical
isomorphism above [11, §37.32].

Let W = A be the Fréchet, resp. Hilbert Lie algebra of G. Recall that the adjoint
representation Ad : G — Aut(A) is the differential of conjugation in G: Adga := (D.Cy)a,
where C, : G — G is Cy(h) = ghg™'. The differential of Ad, ad = DAd : A — End(4), is
given by ady(a) = [b,a]. It is immediate that the adjoint representation satisfies the joint
smoothness condition above. In particular, a connection one-form § € Q!(P, A) yields a
connection V¥ on Ad P, with V3 = d+ [0, -]. (For this reason, our Ad P is often denoted
ad P.)

A linear form on A:

AMA—-C
such that Ad*\ := A o Ad = A induces a bundle morphism

AMAdP—-BxC
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defined as follows. Given a local trivialization (U, ®), where U C B is open and ® :
Ad Ply — U x A is an isomorphism, and a local section o € I'(Ad P|y), we set

This definition is independent of the local trivialization. Indeed, given another local trivi-
alization (V,¥), at b € U NV we have

AM®(0)) = MAdy¥(0)) = A(¥(0)), forsome g=g, €G.

The connection V2 on Ad P induced by a connection # on P induces in turn a
connection V* on the dual bundle Ad P* (i.e. (Ad P)*), which is locally described by
V2* = d + adj. Since Ad*\ = \ implies ad*\ = 0, we have V2" = d\ = 0, since \ is
locally constant. Summarizing, we have:

Lemma 2.1: Let A : Ad P — B x C be the linear morphism induced by a linear form
A A — Cwith Ad*A = ). Let V* =d+1[0,-] = d+ady be a connection on Ad P induced
by a connection 6 on P. Then

dol= oV, (2.1)

PROOF:  Since d\A = 0, we have d o A = A o d locally. However, ad*A = 0 implies
Aod=Xo(d+adg) =XoV¥ sodo)= )XoV globally. O

Abusing notation, we will sometimes denote V2 by [V, o], for o an Ad P-valued form,
in analogy to the local description V! = d + [0, -], with the understanding that [V, o] is a
superbracket with respect to the Z,-grading on differential forms.

The lemma leads to the main result of this section. To set the notation, let £ — B be a
vector bundle with structure group a Fréchet or Banach Lie group G and with fiber modeled
on a vector space V. The associated principal G-bundle P¢ is given by gluing copies of G
over B via the transition maps of €. Strictly speaking, if {U,} is an open cover of B which
trivializes £ and with transition maps g.s(z) € G, x € UyNUg, gap(z) : V — V, then P* =
[[,(Ua x G)/(x,9) ~ (x,gap(x)g) with the quotient topology. As an example applicable
to loop spaces, let M, X be smooth manifolds, E — X a finite rank vector bundle, B :=
C*®(M,X), and let £ — B have fiber &, = C*°(M, b*E). Let {V3} be the path components
of B, and pick bg € V5. Then the structure group of £y, is G = G = C°(M, Aut (b3 E)),
and the associated G-bundle has fiber P¢|, = C®(M, Aut(b*E)) = C*°(M,b*P¥), where
PP is the frame bundle of E.

A G-connection on £ induces a connection one-form on P¢, just as a connection in-
duces a connection one-form on the GG-frame bundle in finite dimensions. In particular, a
connection V on £ induces a connection V3 on Ad P¢, and the curvature € of V lies in
02(B, Ad P?%).

Theorem 2.2: Let P = P¢ be the principal bundle associated to a vector bundle with
connection (£,V) — B with structure group G. Let Q be the curvature of V. Let \ be as

5



S. PAvycHA AND S. ROSENBERG

in Lemma 2.1. Then for any analytic function f : C — C, the form A(f(Q2)) is closed, and
its de Rham cohomology class in H*(B;C) is independent of the choice of V.

As usual, we mean that the degree & piece of A(f(2)) is a closed 2k-form, for all £ € N.

PrOOF:  The usual finite dimensional proof (see e.g. [3]) runs through, with ordinary
traces replaced by A.

In more detail, A\(f(Q2)) is closed because A(QF) is closed for any k € N, which we check
in a local trivialization of Ad P. We have

dA(QF) = A(VHQF) = A QI H(VHQ)0F ) =0,

=1

where we have used the Bianchi identity V{2 = 0 in the last identity.

To check that the corresponding de Rham class is independent of the choice of connec-
tion, we consider a differentiable one-parameter family of connections {V,,t € R} on €£.
More precisely, connections are elements of the smooth one-forms Q!(Ad P), i.e. smooth
bundle maps « : TM — Ad P in the Fréchet topologies. Differentiable families of connec-
tions are defined similarly. V,; induces a family of connections V3 on Ad P. Then

k k
%)\(Qf) = A (Z QFd (vtvt + vtvt) Q{l) = (Z ij(vgdvt)szg'l) (2.2)

j=1 j=1
k k

= A (Z vngf—Jthg*) = d\ (Z Q,’f‘JVtQ{‘l) .
7j=1 7j=1

In the first equality, we use VZ = Q, in the second we have extended the bracket connection
to forms, and in the third we have used the Bianchi identity. (2.2) shows that the depen-
dence on the connection is measured by an exact form and hence vanishes in cohomology.

O

This yields the usual Chern-Weil classes:

Corollary 2.3: Let G C GL(n,C) be a finite dimensional Lie group, and let € — B be
a vector bundle with structure group G. Let V be a connection on £ with curvature ).
For any analytic function f, the forms tr(f(Q)) € Q*(B,C) are closed and their de Rham
cohomology classes are independent of the choice of V.

This follows from Theorem 2.2 by passing from £ to P and using \ = tr, the ordinary
trace on matrices.

Remark: For GL(n,C) and U(n), all characteristic classes are generated by tr(QF), k € N.
However, we do not capture the Euler class for SO(n,R) by this procedure, as this class is
generated by the non-linear, but Ad-invariant function v/det. We can treat this case either
by using the identity det(1+ A) = >_, tr(AFA), or by noting that the proof of Theorem 2.2
does not use the linearity of .
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Notation: Throughout the paper, “UDO0Os” means classical pseudo-differential operators,
and Cl(M, E) denotes the space of all classical UDOs acting on smooth sections of the finite
dimensional Hermitian bundle E over a closed Riemannian manifold M. Cl(M, E) denotes
the subspace of YDOs of order k¥ € R. Cl<x(M, E) denotes the space of YDOs of order
at most k. Cl;(M,E) denotes the set of invertible operators in Cly(M,E). £l (M, E)
denotes the space of positive order, elliptic operators in CI(M, E) with positive definite
leading symbol.

A bundle £ with fiber modeled on C*°(M, E) or on H*(M, E) is a ¥DO bundle if the
transition maps lie in the regular Fréchet Lie group Clj(M, E). Here C*(M, E), H*(M, E)
are the spaces of smooth and s-Sobolev class sections of E, respectively. Ad P¢ is a bundle
of algebras locally modeled on Cl<o(M, E), and will be denoted Cl<o(€). Note that Ad P¢
equals the bundle & Xci(as,E) Cl<o(M, E) associated to the adjoint representation. In §4,
we also consider the larger bundle CI(£) = & X¢z(a,m) Cl(M, E), associated to the adjoint
representation of Clj(M, E) on the algebra Cl(M, E); here CI(M, E) is given the inductive
limit topology of the usual Fréchet topology on Cl<y(M, E).

A connection on a YDO bundle £ is a WDO connection if its connection one-form takes
values in Cl(M, E) in any local trivialization.

Remark: 1If 0 is the locally defined connection one-form of a DO connection on a bundle
& modeled on C*(M, E), then under a gauge change g, 6 transforms to g~'0g + g~'dg.
Since g~ 'dg is zeroth order if ¢ is nonconstant, the connection one-form is usually of non-
negative order. (For left-invariant connections on loop groups, g~'dg vanishes, and # can be
of any order.) When 6 is of non-positive order, it is a bounded operator and hence extends
to a connection on the extension of £ to an H*(M, FE)-bundle. We call a connection with
connection one-form taking values in Cl<o(M, E) a Cl<o-connection. The curvature of such
a connection is a Cl<p-valued two-form on the base.

3 Examples of traces and corresponding Chern classes
in infinite dimensions

In this section we examine two examples of Theorem 2.2. The trace is furnished by the
Wodzicki residue in the first example, and by various traces applied to the leading order
symbol of a zeroth order ¥YDO in the second. We also consider various traces applied to
the leading order symbol of YDOs of negative order, for which an extension of Theorem
2.2 is needed.

In each case, we begin with a Fréchet or Hilbert vector bundle £ over a base space
B, with fiber modeled on C*°(M, E) or H*(M, F), with structure group given by Clj =
Cl5(M, E). We will consider a connection on B with values in the corresponding Lie algebra
Clco = Cl<o(M, E). In the language of §2, we pass from £ to the corresponding principal
bundle P = P* with fiber modeled on Clj. Then Ad P has fiber modeled on Cl<, and we
can apply the Chern-Weil machinery of §2, using either the Wodzicki residue or the leading
symbol traces for the functional .
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Note that in this section, we are treating the structure group Clj as a generalization
of GL(n,C). As in finite dimensions, we focus only on invariant polynomials on the Lie
algebras given by traces. We do not discuss the interesting question of whether all such
polynomials on Cl<, are generated by these traces.

Exactly how these examples generalize the finite dimensional situation is open to inter-
pretation. When the manifold is reduced to a point, the leading symbol of an endomorphism
in the fiber, a “zeroth order YDO,” is just the endomorphism itself, and the only trace, up
to normalization, is the ordinary trace on a vector space. In contrast, in finite dimensions
the Wodzicki residue vanishes. So in this interpretation, the Wodzicki residue is a purely
infinite dimensional phenomenon, while the symbol trace generalizes the finite dimensional
theory.

On the other hand, both the Wodzicki residue and the symbol trace appear in the most
divergent term in asymptotic expansions: the Wodzicki residue of an operator A is the
residue of the pole of the zeta function regularization Tr(AQ~*) at s = 0 (for any positive
elliptic operator @)), and the symbol trace is related to the coefficient of the most divergent
term in the heat operator regularization Tr(Ae™*?) as ¢ — 0. (The last statement is proved
in Proposition 3.4.) Since the two corresponding “regularizations” in finite dimensions
using a positive definite matrix ) simply reduce to Tr(A), we can alternatively view both
examples as proper generalizations of the finite dimensional Chern-Weil theory.

Similarly, on the smaller algebra Cl<,(M, E) for p < 0, there are leading symbol traces
that are also related to the coefficient of the leading term (usually the “most divergent”
term) in the heat operator regularization. Because this is a proper subalgebra of the Lie
algebra Cl<o(M, E) of the structure group, we cannot expect a full Chern-Weil theory for
Cl<,(M, E)-connections. Nevertheless, in §3.3, we produce closed characteristic forms for
these connections and show that the characteristic classes obtained this way are indepen-
dent of the choice of connection, provided the two connections differ by a Cl<,(M, E)-valued
one-form. In §4, we improve this result and the results in [18] by formally keeping track of
all terms in the relevant asymptotic expansions.

In summary, there seems to be no canonical generalization or regularization of finite
dimensional Chern-Weil theory free from drawbacks: using the operator trace on trace
class operators is too restrictive for zeroth order operators, the better adapted leading
symbol traces vanish on trace class operators and operators of negative order, and the
weighted traces of §4 are not true traces. Moreover, there is no canonical interpretation
of whether a specific method is indeed a proper generalization, as the Wodzicki residue
can be interpreted either as an extension of the finite dimensional theory or as a purely
infinite dimensional pheonomenon. The particular choice of regularization depends on a
combination of physical motivation, computability and nontriviality results.

3.1 The Wodzicki residue

Recall that the Wodzicki residue resy A of a YDO A acting on sections of a bundle F
over a closed manifold M is defined to be the residue of the pole term of Tr(AQ*) at
s = 0, for an elliptic operator ) with certain technical conditions. Alternatively, res, A is
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proportional to the coefficient of loge in the asymptotic expansion of Tr(Ae ¢?) as ¢ — 0,
for Q € EIIT(M, E). The strengths of the Wodzicki residue are (i) its local nature:

1
(2m)"

resy, A =

/ tr o? (x,€) d¢ dz,
S*M

where n = dim(M), S*M is the unit cosphere bundle of M, and o4, is the (—n)®™ homoge-
neous piece of the symbol of A; and (ii) the fact that it is the unique trace on Cl = CI(M, E),
up to normalization. Its drawback is its vanishing on all differential and multiplication op-
erators, all trace class operators (and so all WDOs of order less than —n) and all operators
of non-integral order.

Given an infinite dimensional bundle £ over a base B with fibers modeled either on
H*(M,E) (with s > 0) or on C*®(M, E), and a connection on £ with curvature Q €
0?(B,Cl), we can form the k'™ Wodzicki-Chern form by setting

¢y () = res, Q* € O%*(B).

By Theorem 2.2, ¢} (2) is closed and independent of the connection.

As an example, we show that the Wodzicki-Chern forms vanish for current groups
C = H**Y(M, G), the space of H*™'-maps from a closed Riemannian manifold M to a Lie
group G. (The same vanishing holds for Fréchet current groups.) The tangent space at
any map f is the space of sections H*(M, f*TG). Since TG is canonically trivial, so is TC.
For the trivial connection, we certainly have the vanishing of the Wodzicki-Chern forms.
It follows that the Wodzicki-Chern classes vanish for any DO connection.

We now check that the Levi-Civita connection on a current group is a VDO connection
for a semi-simple Lie group G of compact type. (These assumptions ensure that the Killing
form is nondegenerate and that the adjoint representation is antisymmetric for this form.)
C is a Hilbert Lie group with Lie algebra H*(M, A), the space of H® sections of the trivial
bundle M x A, where A = Lie(G). Thus the tangent bundle 7C is a ¥YDO bundle with
fibers modeled on H*(M, A). For A the Laplacian on functions on M, we set Qg := AQ14,
a second order elliptic operator acting densely on H*(M, A). @ is non-negative for the
scalar product (-,-)o := [;, dvol(z)(-,-), where (-,-) is minus the Killing form. TC has a
left-invariant weight ¢, = L,QoL ! (i.e. a family of elliptic operators on the fibers), where
L, is left translation by v € C.

C has a left-invariant Sobolev s-metric defined by

()" = <Q0%'5Q0%'>0:
where Qg is really @y + P, for P the orthogonal projection of )y onto its kernel. The
corresponding left-invariant Levi-Civita connection has the global expression V* = d + 6,
with 6° a left-invariant End(7C)-valued one-form on C induced by the End(H*(M, A))-
valued one-form on H*(M, A)

0;(U) = 5 (ady + Qo *ady Qo° — Qo *adg,ev) , (3.1)

N | =

9
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for U € H*(M, A) [6, (1.9)]. By inspection, ° takes values in Cl<o(M, M x A).

The fact that Wodzicki-Chern classes vanish on current groups is not surprising, since
the same argument works on any parallelizable manifold. It is more surprising that these
classes vanish on any loop space, even when the target manifold is not parallelizable [14].
Thus the Wodzicki residue, the natural first choice for a trace functional, yields a Chern-
Weil theory that is currently vacuous. As a result we look for other functionals with
nontrivial Chern-Weil theory.

3.2 Leading symbol traces

The uniqueness of the trace on Cl defined by the Wodzicki residue does not rule out the
existence of other traces on subalgebras of Cl. Indeed, the ordinary operator trace on
Cl<_p/2 is an example. In this subsection, we will introduce a family of traces on Cl<y and
show that they produce non-vanishing Chern classes on the universal bundle associated to
the gauge group for &€ = T LM, the tangent bundle to the free loop space of a Riemannian
manifold M. To our knowledge, this is the first example of non-vanishing Chern classes of
infinite dimensional bundles above c;.

We first produce a “trace” on Cl<, for fixed p < 0 with values in S*M, and an associated
family of true traces. A description of all traces on e.g. Cl<, for fixed p < 0 is an interesting
question; we have preliminary results with J.-M. Lescure. Let D'(X) denote the space of
complex valued distributions on a compact manifold X.

Lemma 3.1: Forp <0, the map Tr, : Cl<,(M,E) — C*(S*M) defined by

Try(A) = try(07}(2,€)) has Try(A + B) = Try(A) + Try(B), Try(AA) = ATr,(A), and
Tr,(AB) = Tr,(BA). For any A € D'(S*M), the map Tr;} : Cl<p, = C given by Tr;\(A) =
A(Try(A)) is a trace.

ProOOF: Certainly taking the p*™® order symbol is linear. When p = 0, since the leading
order symbol is multiplicative, we have

AB

BA
tr, o,

= try(0f - 08) = try(of - 0f) = tr, O

When p < 0, for A, B € Cl<,(M, E), the products AB and BA lie in Cl<9,(M, E) so that
we have

tr, 0;,43 =0=tr, UfA.
The proof of the second statement is immediate. 0
In this subsection, we focus on the case p = 0, leaving the case p < 0 for the next

subsection. For convenience we set Tr := Try, Tr" := Tr). When the distribution is given
by A(9) = [4uny f(2,8)d(2,€) for all ¢ € C°(S* M), we simply write Tr/.

Remarks: (i) When p < 0, for 7 € [2p, p], Tr, A = tr,(c2(x, £)) is also a trace, as Tr,(AB)
trivially vanishes for » > 2p. The proof of the lemma covers the case r = 2p.

10
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(i) Let Q € &Y (M, E) have scalar leading symbol ag(x,f) = f(z,€)Id. Define fe
C>®(S*M) by

_ (m-nr (g) dim(E)
/= q(2m)"

where n = dim(M), ¢ = ord(Q). Then Trf(A) is the leading term in the asymptotics of
Tr(Ae *9) if ord(A) = 0 (see Proposition 3.4).

Recall that the ring of characteristic classes for e.g. U(n) bundles is generated by the
Chern classes ¢, = [Tr(A*Q)], or equivalently by the components vy = [Tr(QF)] of the
Chern character. Note we are momentarily distinguishing between Tr(A¥A) and Tr(A*)
for a matrix A. We will concentrate on Chern forms, and abuse notation by writing

= [Tr(Q%)].
Definition: Let £ be a bundle over B modeled on H*(M, E) or C*°(M, E), and let V be

a UDO-connection on €. The k*® Chern class of V with respect to A € D'(S*M) is defined
to be the de Rham cohomology class

flz, &)

[ep ()] = [Atrzof (z,€))] € H*(B;C). (3.2)

As before, when A(¢) = [.,, f(z,£)o(x, &) we set ¢, = ch.

Remarks: (1) As an example, if f =1 € C°°(S*M) is the constant map with value 1 on
S*M, then

A = [ ol @0,

At another extreme, if A = §(5,¢,) is a delta function, then

cp(Q) = tray 0f (20, 0)-

(2) As in the previous remark, we can define Chern classes cj}k for connections with
curvature forms taking values in Cl <, for any r € [2p, p|. Note that for r < pande.g. A(¢p) =
i) ooy @(2,&), these classes are defined only after a choice of coordinates on M, E and a
partition of unity on M, since integrals of non-leading order symbols depend on such
choices.

The following result justifies this definition:

Theorem 3.2: Let V be a Cl<y connection on a YDO bundle £. Then the differential
forms ci(Q) are closed, and their cohomology classes are independent of the choice of Cl<g

connection.

PROOF: By Lemma 3.1, Tr" is a trace on Cl<o(M, E), so we can apply Lemma 2.1 to the
principal bundle P = P¢ built from € to get the relation d o Tr* = Tr* o V2. We then
apply Theorem 2.2 to get the corresponding Chern classes [c} ()] O

11
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Remark: For the linear functionals Trﬁ, the proof that the Chern forms are closed goes
through. However, the proof of their independence of choice of connection breaks down,
since the class of connections with curvature forms lying in Cl<, is not connected. In the
next subsection, we nevertheless show that the independence holds on a restricted class of
connections.

When the structure group reduces to a gauge group, we can construct an example of non-
zero Chern classes [cf (Q)]. Fix n > k and consider the Grassmannian BU(n) = G7(n, o0)
with its universal vector bundle E,,. We consider the pullback bundle E = 7*E,, over S* x
BU (n), with 7 the projection onto BU(n). We now “loopify” to form B = L(S! x BU(n)),
the free loop space of S* x BU(n), with bundle £ whose fiber over a loop v is the space
of smooth sections of v*FE over S'. (&, is the space of loops in E lying over v, suitably
interpreted at self-intersection points of 7, so we will write £ = Lx*E,.) Since v*FE is
(non-canonically) isomorphic to the trivial bundle S' x C* over S*, it is easily checked that
the structure group for £ is the gauge group G of this trivial bundle. Indeed, as in the
example before Theorem 2.2 with M = S', X = S' x BU(n), the structure group of £ is
C> (S, Aut(y*F)) = C*(St, Gl,(C)).

Take a hermitian connection V on E, (e.g. the universal connection PdP, where P, is
the projection of C* onto the n-plane x) and its pullback connection 7*V on S* x BU(n).
As in the case of the tangent bundle to a loop space, we can take an L? or pointwise
connection V° on & by setting

VXY (7)(0) = (7"V)x9)Y (6),

for X a vector field along v (i.e. a tangent vector in B at ) and Y a local section of
E. The curvature ° acts pointwise and hence is a multiplication operator: (Qu)(6) =
(m*V?)4gyu(0). In particular, its symbol is independent of &.

Pick the distribution § = (1,+) on C®(S*S') = C=(S' x {£0y}): i.e.

6(f(0,05),9(0,—0)) = 2i . £(6,8) db.

™

We claim that [¢f ()] is nonzero in H?*(B; C). To see this, let a = agy, € Hox(BU(n), C)
be such that (c;(E,),a) = 1. Define ¢ € H*(B) to be ¢ = B,a, where 3 : BU(n) —
L(S' x BU(n)) is given by ((z)(0) = (6, 7). Now

([ ()], €) = ([h(Q)], Bua) = ([B*;(2°)], a), (3-3)
since 3 has degree one. For v € L(S' x BU(n)), we have
1 0y 1
4 0 _ Q%) _ * Ok
A = o- /S (™ (30). 040)) 8= 5 [ w(waky) o (a)

For a tangent vector X € T, BU(n), it is immediate that 3,(X) € T B has 5.(X)(0,z) =
(0, X). Thus by (3.4),

B*Cz(QO)(Xl, Ceey ng) = QL / tI‘(’]T*Qk)(Xl, ey ng) == tI‘(’]T*Qk)(Xl, ‘e ,ng). (35)
™ Js1

12
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Combining (3.3) and (3.5), we get

([ ()], ) = ([tx(2°)], a) = 1.
In particular, the class [c2(€2°)] must be non-zero.

Theorem 3.3: The cohomology classes [c3(€2)] are non-zero in general. In particular, the
corresponding classes for the universal bundle EG are nonzero in the cohomology of the
classifying space BG, where G is the gauge group of the trivial bundle S* x C* over S*.

We have shown the first statement. To explain the second statement, note that although
the structure group of L7*~, is the gauge group of the trivial bundle S! x C* over S!, the
curvature of the connection will take values in Cl<o(S*', S* x C) of this bundle. As a
result, the classifying space is really BClj. It can be shown [17] that the principal symbol
map is the time one map of a deformation retraction of Clj onto the gauge group of the
trivial bundle over S*S*, which is just two copies of G. Thus BCI} is homotopy equivalent
to BG ][ BG, and each [c,(cl’i)] is non-zero in one copy of BG. The proof of the second
statement depends on the existence of a universal connection on EG over BG [17].

In fact, BG equals LyBU(n), the space of contractible loops on BU(n) [2]. It is known
that H*(BG, C) is a super-polynomial (i.e. super-commutative) algebra with one generator
in each degree k € {1,...,2n}. In analogy with finite dimensions, we conjecture that [c{]
is a nonzero multiple of the generator in degree 2k. For k = 1, this is clear.

We now outline a conjectured construction of geometric representatives of the odd
generators in H*(BG). The tangent bundle TLM of any loop space splits off a trivial line
bundle, namely the span of 4 at the loop 7. Note that for any connection on a bundle over
LM for any A € D'(5*S') we have

where i is interior product and L is Lie derivative. We state without (the elementary) proof
that (3.6) implies
disep (Q) = M), (3.7)

where OA is the derivative of A as a distribution on S*S!. In particular, we see that
i;,cgcl’i)(Q) are closed forms. It remains to be seen if [iﬁcg’i) ()] € H* Y(BG]] BG) are
non-zero.

We can also use (3.7) to understand the dependence of [c}(£2)] on A. Since A is a zero
current on S*S' and hence is trivially closed, and since exact zero currents A produce
vanishing Chern classes by (3.7), we see that the space of classes

{lck ()] : f € D'(S*S")} € H*(BG)

is isomorphic to the zeroth cohomology group of complex currents on S*S'. (Here we are
extending the usual confusion of functions f and one-forms fdf on S! to a confusion of
zero- and one-currents.) This cohomology group is isomorphic to Hy(S*S!), and is spanned

13
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by (1,=£). (The reader may wish to check directly from (3.7) that all -function currents
on one copy of S produce the same cohomology class. A more interesting exercise is to
show that these delta functions produce the same cohomology class as one of (1,+) using
Fourier series.)

Remarks: (i) The general case, where the gauge group is associated to the bundle E over a
closed manifold M, is more complicated. The cohomology of BG is known, and in general
has odd dimensional cohomology [2]. We do not know at present which part of H*(BG) is
spanned by [ch (©279)], where we use the universal connection mentioned above. We also do
not know how to produce geometric representatives of odd dimensional classes in H*(BG),
nor do we know how the Chern classes depend on the distribution.

(ii) In the loop group case, Freed showed [6] that the curvature 2° of the H® Levi-Civita
connection is a YDO of order —1 for s > 1/2. For this connection, the Chern forms built
from og trivially vanish. In the next subsection, we discuss the k-th Chern forms one can
build using the symbol of order —k. For loop groups, the first Chern form requires the
additional analysis in §4, while higher powers of the curvature are trace class operators,
requiring no regularization.

(iii) For the distribution A given by integration over S*M, the symbol trace looks like
an integration over the fiber. Nevertheless, to the best of our knowledge, our Chern classes
are not given by an integration of characteristic classes of an associated finite dimensional
bundle.

In more detail, let £ be a bundle over B with structure group Cl; and with a ¥YDO
connection V. Let G be the gauge group of 7*E over S*M. As in [17], £ reduces to a
G-bundle F' with connection V', where the connection one-form of V' is the zeroth order
symbol of the connection one-form of V. The curvature of V' equals the zeroth order symbol
of the curvature of V. The fiber of F' is still C*°(M, E), and we can form a G-bundle F
over B with fiber C*(S*M, 7*E) using the same gluing maps as for F'. (While G acts on
fibers of F' as zeroth order ¥DOs, it acts on fibers of F as multiplication operators.) The
connection one-form for V' still transforms correctly on F, and so defines a connection on
F, also denoted V'. The curvatures of the V' connections are equal.

F induces a finite dimensional bundle F' over B x S* M, with fiber 7 E|, ¢) over (b, z, ).
However, V' induces a connection V¥ on F only after we specify how to differentiate in
S*M directions. Assume that we can specify these differentiations so that the curvature
OF is flat in S*M directions. QF will still agree with Q7 in B directions, and

A = O] =@ = | [ @]

— /S*M[tr((QF)k)] == /SW c(F),

where [, outside the braces is the pushforward map from H*(B x S*M) to H*(B).
Thus under the assumption, the cohomology class ci(€) will indeed be the integration
over the fiber of the Chern class of a finite dimensional bundle. However, the assumption

is unreasonable: even if F is trivial, as for loop spaces, there is no canonical identification
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of the fibers of £ with H*(M, E), so the trivial connection on E does not glue up to a
connection on F' which is trivial in $* M directions.

3.3 Leading terms in heat-kernel asymptotic expansions

In this section, we consider traces Tr£ for p < 0. Theorem 2.2 no longer applies, as it did
for p = 0, since Tr;} defines a trace only on the subalgebra Cl<, of the Lie algebra Cl<,. We
cannot expect these traces to produce a full Chern-Weil theory on ¥YDO bundles. However,
they do yield characteristic classes which are independent of the choice of the connection
in some restricted class of connections.

We first relate leading symbol traces to leading terms in heat-kernel asymptotic expan-
sions. We then use Trg to prove that the leading term in the asymptotic expansion of
tr(Qe™?) is closed, where @) is a generalized Laplacian and € the curvature on a ¥DO
bundle. In fact, we show that if @ has positive leading symbol o,(Q)(z,&) = f(z,£)Id and
if  has integer order a > —dim(M), then this leading term is given by the leading symbol
trace Trl(Q).

The following folklore result follows from the analysis developed in [7], while the analysis
in the following proof is hidden in the local nature of the Wodzicki residue.

Proposition 3.4: Let A € Cl<o(M, E) have integral order a > —n = —dim(M), and let Q
be an elliptic ¥DO of order q with positive scalar leading symbol o, (Q)(z,€) = f(z,&)1d.
Let ¢ = ¢(n,a,q) be

INg

+4)dim(E)(n — 1)!
q(2m)"

cC=

Then as ¢ — 0,

(e ) =c [ o)) (Fm6) T e 4ol )
S*M
In particular, if o(Q)(z, &) = ||€||* for some k, then
tr(Ae=@) = ¢ / tr (0a(A)) - =" 4 o(c "
M

ProOOF: We want to compute the coefficient ag(A, @) in the known asymptotic expansion

a+n

tr(Ae9) = Za] (4,Q)e 7" + by(A4, Q) loge + O(1), (3.8)

for general A € CI(M, E) of order a, and with a;(4,Q),b(A,Q) € C. The coefficient
bo(A, Q) satisfies bo(A, Q) = —aresW(A)
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A Mellin transform yields

n—+a

ag(A, Q) = Resz:nTﬂF < > tr(AQ™?),

(the case A =1 considered in [10, (12)] easily extends to a general YDO A). Thus, for A
as in the hypothesis,
F(n—i—a)
Qo (A: Q) = q .

qT'(n+a)

CL()(A, Qé)

Thus it suffices to prove the formula for Q; of order one. Since ord(AQ; ")

becomes

= —n, (3.8)

tr(AQ, " e #91) = —res,, (4Q; ") loge + O(1).

Differentiating this expansion 7 + a times (recall that n + a is a positive integer) with
respect to €, we get

tr(Ae™@) ~ (n + a — 1)! res, (AQ] ")~ (nta),

The local formula for the Wodzicki residue yields:

reSW(AQ;(n+a)) = (2m)n /S*Mtr(an(AQl(n+a)))

_ dim(E) o SN
— (2 /S*Mt(a(A))f( I

Hence our original () has

_L?) i) = —(n+a)/q
@l 4,Q) = a0 = ¢ [ (e (4) (@) .

O

Lemma 3.5: Let £ — B be a YDO bundle with a YDO connection V whose connection
one-form 0 takes values in Cl<o(M,E). Let A € Q¥(B,CL(E)) be a Cl<y(E)-valued form
whose order a is independent of b € B.

(i) For any distribution A € D'(S*M), dTr(A) = Tr2([V, A]). In particular, if [V, A] =
0, then Tr>(A) € Q¥(B,C) is closed.

(ii) Let Q = {Qp} € T (CI(E)) be a smooth family of elliptic operators of constant order
q and with positive scalar leading symbol independent of b € B. Define ag(A, @), bo(A, Q) €
OF(B,C) as in (3.8). If [V,A] = 0, then by(A, Q) is closed, and ao(A,Q) is closed if
a € Z,a> —dim(M).

Note that the condition on the leading symbol is independent of trivialization of £.
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PROOF:
(i) We have
ATEM(A) = A fdtr(ou(A))] = A ltre (00 (d4))] = A ftr, (0a(dA + 6, A])]
= A [trz (Ua([V; A]))] :

Here we use the fact that € has non-positive order, so that

tra (0a ([0, A])) = trz ([00(6), 0a(A)]) = 0,

if [#, A] has expected order a. Finally, o,(]f, A]) = 0 trivially if the order of [, A] is less
than a.

(i) ao(A, Q) is the leading term in the asymptotic expansion (3.8) and hence propor-
tional to a leading symbol trace by the above proposition. It is therefore closed by (i).

Since by(A4, Q) = —resy(A), it is closed by §3.1. O
As a consequence, we can build “Chern-Weil type” closed forms from leading symbol
traces Trg.

Theorem 3.6: Let £ — B be a YDO bundle with a $YDO connection V whose connection
one-form 0 takes values in Cl<o(E), and whose curvature two-form (which takes values in
Cl<o(€)) has constant order a. Let Q € I'(CL(E)) be a smooth family of elliptic operators
of constant order q and with positive scalar leading symbol independent of b € B. In the
notation of (3.8), the following elements of Q* (B, C) are closed:

(i) Tri (QF), for any A € D'(S*M);

(i) ag(Q*,Q), for ka € Z,a > —%, where n = dim(M);

(1ii) by (2%, Q). Moreover, the cohomology class of by(2*, Q) is independent of the choice
of connection V.

Let {V;:t€0,1]} be a smooth family of Cl<o(E) connections such that
V, € QY(B,Cl,(€)) and Q, € Q*(B,Cly(E)). The following de Rham cohomology classes
are independent of t:

(i) T}, (0]

(v) [ao(Q%,Q)] for ka € Z,a > =%, where n = dim(M).

Note that when a = 0, this gives back the results of Theorem 3.2.

ProoF: (i) — (iii) follow from Lemma 3.5. The fact that [by(Q2*, Q)] is independent of
the choice of connection follows from the results of §3.1, since by(Q2*, Q) is proportional to
res,, (2%). For (iv), we repeat (2.2), with A replaced by Trj . Note that we have to use
Lemma 3.5 to swap the (covariant) differentiation and Try, in this argument. Finally, since
ao(Q¥, Q) is a leading order symbol by Proposition 3.4, we get (v). 0

Remark: Theorem 3.6 does not apply to Freed’s conditional first Chern form on loop
groups. Even though, as we will see in §4, this Chern form corresponds to the finite part
ao(£2, Qo), the curvature of the Levi-Civita connection for the H'/2 metric on LG has order
a = —1 = —dim(S"), the borderline case for Theorem 3.6. Showing that Freed’s conditional
first Chern form on loop groups is closed [6] requires the more refined analysis of §4.
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4 Characteristic classes and formal power series

In this section, we use heat kernel regularized traces to produce an asymptotic series of
characteristic forms, provided the regularizing family of operators {Q} is “fairly covariantly
constant.” This improves the weighted trace approach of [18], and is based on regularization
techniques common in quantum field theory.

We begin with some calculations leading to Lemma 4.1, which measures the effect of
trying to push a connection V on a bundle £ past a heat operator or a weighted trace. For
{Ao, A1, Ap} CCI(M, E) and (o9, -+, 0,) € (RT)""! the operator
Age™ 79 A e 1@ ... A e79"? is smoothing and hence trace class. We define trace forms

<A0, Al, e aAn)s,n,Q = / tr (A()e_EUOQAle_EUIQ s Ane_EUnQ) y (41)
Aq

where A, is the standard n-simplex, in agreement with [9] (although there the A; are
bounded). In particular, we call the @Q-weighted trace of A (with e-cut-off) the linear
functional (Ap)e 0,0 = t19(Ay).

The concept of trace form and hence of weighted trace extends to sections of a YDO
bundle. Recall that a ¥DO bundle £ with structure group Clj(M, E') has an associated
bundle of algebras Cl<o(€) = Ad P¢ with fibers modeled on Cl<o(M, E). A weight is a
section @ € I'(CI(£)) with @ elliptic with positive definite leading symbol and of constant
order. These conditions are independent of local chart, since the transition maps are ¥YDOs.
In particular, if {g,} is the transition map between two trivializations of £ over b, then @
transforms into g; 'Qgs; the same holds for sections of CI(£). For A € T'(CI(E)), tr2(A) is
well-defined, since

11979 (g 7 Ag) = Tr(g ™ Age™9 YY) = Tr(g ' Agg e %) = tr¥(4).  (4.2)

In the same way, for {Ag, Ay,---, A} C T'(CU(E)), the trace form (Ao, Ay, -, Ap)eng 1S
well-defined.

We set tr?(A) to be the finite part of tr%(A) as ¢ — 0. In other words, tr?(A) is the
coefficient of €9 in the asymptotic expansion (3.8). This is equivalent to taking the zeta
function regularization Tr(AQ~?)|,—0, provided @ is invertible and (3.8) contains no log
terms.

If Q = Qo+ Q1, with @ elliptic of order ¢; > 0 and @, of order ¢; < qg, the Volterra
formula [1, 3, 8] (the first and third references treat the Banach algebra setting) states

oo
£(Qo+Q1) Z / —00=Q0 (), e 915@0 (), . .. Qre Tk N doydoy - - - do.
k=0

The convergence holds in the trace operator norm topology, and so

o0

tr ( ¢ Q0+Q1 Z ]- Q17 7Q1>5,k,Q0'

k=0
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For the moment, let £ be a trivial vector bundle over B modeled on C*(M, E) or
H*(M, E), with structure group Cly = Cly(M, E), and with the trivial connection d. Let
@ be a weight on €. For h € T, B, writing Qp = Qp, + dQ(bo) - h + o(h) and substituting
Qo = Qpy, @1 = dQ(bo) - h +o(h) in (4.1) yields

1
eEd — 75 = —5/ e~ (dQ(by) - h) eL™=%0 dt + o(h)
0

in the trace operator norm topology. From this we derive Duhamel’s formula:

1 1
de *9 = —¢ / e Qe 1Nt = —¢ / e~ (179:QdQe 1. (4.3)
0 0

Remark: 1In this derivation we implicitly restrict attention to a compact subset K of B,
so that the o(h) term is uniform on K (see [3]). This applies throughout this section. In
particular, we check that a form w is closed on B by evaluating dw over every closed cycle
in B. Since the image of a cycle is compact, dw is well defined, and formulas like (4.3)
are valid. Moreover, we can use Duhamel’s formula to justify differentiating asymptotic
expansions of the form Tr(Aye '?*) term by term, provided the asymptotic expansions
contain ¥#/9 terms (possibly with zero coefficients) with the k ranging over a subset of Z
independent of b. This is certainly the case if the order of A is constant in b.

For A, QQ = )y, as above, we also have

1
[e 9 A] = —6/ e (TDR[Q, Ale ** Q. (4.4)
0

Indeed, differentiating the map ¢ — [e7*?, A] (which is differentiable as a bounded linear
map from H*™(E) to HY(E) for a = ord(A), ¢ = ord(Q)), we get (£ +Q)[e 9, 4] =
[A,Q]e?. Solving this equation by (the other) Duhamel’s formula for first order in-
homogeneous linear differential equations gives [e™*9, A] = fol e™*R[Q, Ale=(¢=9)9dt, and
substituting ¢ = es yields (4.4). This identity, which holds a priori in the space of bounded
linear maps from H*™(€) to H°(E), persists as long as both sides of the equation make
sense.

Replacing A by [A, Q] and Q by ¢Q in (4.4) yields

1
ef(lfa)eQ[Q,A]efsaQ — egQ[Q,A]-i-EO'/ 6(7(1701)07(170))562 [Q, [Q,A” efsaaleo_l
0

1
= ¢ 0Q, Al +eo / e (1R Q,[Q, Alle 7 Vo,
0

= e 9Q,A] +¢ / e~ [, [Q, Al e = do,
0
and so

6729, A] = —ee*9[Q, A] — 82/ e 17 Q,[Q, All e *Udo do. (4.5)
Az
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For a YDO A, define [A]](;?,j € Nu {0}, by

[Ag = 4, (Al =[Q,[A],) = (ad QY (4).

We now make the important assumption that @ have scalar symbol. Iterating (4.5)

gives
N—1

&
=2, 4] = -3 AT + Rane), (4.6)
j=1 7"
for N € N, with

Ran(e) =¥ / e~ =R AN e~ Rg, doy.
Ay

One can check that for & > 0, Ry n(e) = O(e*) for N = N(k) > 0 (cf. [12, Lemma 4.2]).
In particular, we have

=2

tr9([A, B]) = tr(e *“[A, B]) = tr([e™*?, A|B) = itrQ (A[B]Z?) + 0(e") (4.7)

| €
1

<

J
for N > 0. Letting @ = @, vary again, and using (4.3), (4.6), we obtain

N .
—& el j—1 _—¢ D
de Q:_ZF[dQ]jQ 16 Q+RdQ’N+1,

where Ry n11(e) := —¢ fol oV *tle Q@ Ry .n+1(e0)do. Taking traces yields

tr ((de™*9) A Z 2 ([dQY5 " A) + O(eh). (4.8)

We now pass to the general setting by dropping the assumption that £ is trivial. We
assume that & has a YDO connection V .

Lemma 4.1: (i) Fore > 0,

N

B g o -
[V, = =3 5[V, Qg™ e + Rvquviale)
=17
where Ry g n11(e) = —¢ fol oV tte @Ry gn11(e0)do.

(ii) For o € Q*(B,CI(£)) and k > 0, there exists N > 0 such that

[V, tr9](a) := (Vtr¥ — tr2 V) ( Z J' ( v, Q]] ) + O(e").

Jj=1

%
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ProOOF: Locally, we have V = d + 6 where 6 is a local Cl(M, E)-valued one-form on B.
We can apply (4.6), (4.8) to obtain

[V,e’gQ] = deng + [0, e’gQ]

= EZ, ”+w*Q§j.uerl+meNﬂ(>

]j 1+RVQ ~N+1(¢),

I
I Mz

where R[V’Q],N+1(6) = RdQ,NH(s) + R[Q,QLNH(.E). For a a Cl(M, E)-valued form on B, we
get by (4.7)

[V, trf(a) = dtr(e %) —tr (e *9[V, a])
tr ((de™*?)a) — tr(e =90, o)

N
€ .
= =Y 56l (IIV,Qll, o) + O()
=17
provided N is chosen so large that tr%(aRy g v 11(€)) = O(e). O

We now extend a familiar construction for ordinary algebras [8, 16] to bundles of algebras
by considering CI(£)[[¢]], the space of formal power series in the variable ¢ with coefficients
in Cl = CI(). Thus an element A(e) of Cl[[e]] has the form A(e) = Y 72 A/, A; €
['(Cl). The reader unhappy with these formal sums can just work with finite sums with
error estimates, as in Theorems 4.4, 4.6 below.

Recall that the algebra CI(M, E) of classical (polyhomogeneous) WDOs is given by finite
sums Y . A;, where each A; is polyhomogeneous in the sense that the symbol of A; has
an asymptotic expansion o(A;) ~ 37 0,,—j, 0; = ord(A;) with o,,; having the standard
homogeneity and growth conditions for the symbol class S%~7 [7]. The order of A is then
the maximum of the o;. It is standard that each A;, has an asymptotic expansion as ¢ — 0
of the form

e j—o;—n
tr?(AZ) ~ E aj(AZ-, Q)E q
=0

where a;(4, @), bk(4,Q), (A, Q) € C and n = dim(M). Thus A has a similar asymptotic
expansion. We set

+ ) bk(As, Q)(loge)e® + ) erl(Ai, Q)e’, (4.9)
k=0 £=0

(trg(Ai))asy = a’j(Ai; Q)EJ_O;_n

J=0

+ D bi(4;, Q) (loge)e”
k=0

+3" A Q)" € Clogelles 6],
=0
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and define (tr?(A))aSy by linearity. Given a weight Q € I'(CI(£)) as above, the C-linear
morphism t19 defined for fixed € partially extends to a C[[¢]]-morphism

tr@ : T (CL(E)[[]]) — Cllog 5][5_5,55]], A= ZAkak — Z (tr2(Ag)) " (4.10)

asy

In the last term in (4.10), we formally rearrange the sum to produce an element of
Cllog 8][87%,85”, provided the number of terms contributing to each £ and (loge)e’ is
finite.

It is not hard to give conditions that guarantee that tr9(3" 7, Axe®) exists in this
formally rearranged sense:

Lemma 4.2: If the a; := ord(4;) satisfy lim;_,o qi — a; = oo, then tr@(3 00, Aie') emists
as a rearranged sum.

Proor: We may assume that each Ay is classical polyhomogeneous, as replacing Ay by

a finite sum of such operators does not affect the proof. For fixed i, j, the term a;(A;, Q)
j—a;—n+qi

in (4.9) appears in tr@(} 50, Aie’) as a coefficient of e ¢ . The hypothesis guarantees
that only a finite number of i, j can contribute to the coefficient of a fixed e¥o. Similar
arguments apply to bx(A4;, @), ce(Ai, Q). O

Motivated by Lemma 4.1, we introduce a C/(£)|[¢]]-valued connection V¥ defined in
terms of the connection VE!©) = [V,.] = VA P° on CI(£) and the weight Q:

V= Vvia )" j—], [V, Q5" @, a € Q*(B,CI(E)). (4.11)

=1
We now show that V& has the key property of commuting with the weighted trace tr< :

Lemma 4.3: Let V be a Cl<g-connection on &, and let Q) be a weight on € with scalar
leading symbol. For oo € Q*(B,CY(E)), we have

d otrfa = tr¥ o V.

Proor: By Lemma 4.1, we have

dotr?a — tr? o Va = [V, tr%)(a) = [V, tr¥](a) — Z (_;)] tre ([[V, Q]]gl oz) =0,

Jj=1

provided we show that tr? can be applied to V@a. In fact, if d := ord[V, Q] < ¢, then the
order of [[V, Q]]JQ_1 isa; <d+(j—1)(g— 1), since @ has scalar leading symbol. Thus the
hypothesis of Lemma 4.2 is satisfied. 0

Remarks: (i) The preceeding proof assumes that Lemma 4.1 extends to formal power series
of operators. This justification, while not difficult, is somewhat lengthy and is omitted.

22



CHARACTERISTIC CLASSES ON LOOP SPACES

(ii) If V€ were induced from a connection on £, Lemma 4.3 would guarantee a Chern-
Weil theory for the curvature Q9: each coefficient in tr?(Q¥) would be a closed from
independent of the connection. However, we will see in Corollary 4.7 that for loop groups,
the leading order coefficient is the Kihler form Tr?(Q) for the H'/? Levi-Civita connection.
The corresponding non-zero Kahler class is certainly not independent of connecction, since
TLG is trivial. Theorem 4.6 gives a more refined analysis of this example.

Despite the last remark, we can use Lemma 4.3 to produce a Chern-Weil theory under
additional hypotheses.

Theorem 4.4: Let V be a Cl<y-connection and Q@ a weight on € of order q and with scalar
leading symbol. Let d be the order of the Cl(E)-valued form [V, Q)]|, and set r := q — d.
(i) For a € Q*(B,CIl(E)) of constant order a, we have

—a—n+r—n

dtr® (o) = tr?(VCl(g)a) +o(e” ¢ ),

for all n > 0. N
(ii) Let Q, the curvature of V, have constant order a. Then the coefficient of €1 in the
asymptotic expansion of tr2(QF) is closed, for all v < —ka —n+r. In particular, if r > 0,

the coefficient of the leading order term e i " is closed. The coefficients of loge - €° are

closed for all £ < w.

(1i) Let Q have constant order a. The coefficient of loge in the asymptotic expansion
of tr@ (%) is closed.

Note that part (ii) of the theorem only applies if » > 0, which occurs e.g. if the leading
order symbol of () is independent of b € B. We need r > ka + n to obtain information
about the loge - €’ terms with £ > 0.

PrOOF: (i) By Lemma 4.3, we have
dtr®(a) = tr?(V2a) = tr9(V©® Z —' (v Q]] ‘).

We want to show that for n > 0,
n+a—r+ o 8‘7 .
; Q 1 —
lime ™ (E 1 ﬁtrs (v, Q15 a)) =0.
‘]:

Since the infinite sum is a rearrangable formal power series, we mean that each exponent
ko of the rearranged series satisfies W + ko > 0. Since the leading asymptotic term

a;e% of tre ([[V, Q]]gla) contributes the exponent j + 1;, it suffices to show that

n+a—r+ :
—n—i-j +; >0, (4.12)
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for all j € N. (A similar argument treats the case where the leading asymptotic term
contains loge.) As in Lemma 4.3, d; := ord([[V, Q]]JQ_I) satisfies d; < d+ (j —1)(g —1) for
d :=ord[V, Q]. Thus

7'>—dj—a—n>7“+j—1—a—n—jq
o q - q ’

which implies (4.12).
(ii) Since VEEOF = 0 and ord(2¥) = ka, it follows from (i) that

(e 9]

dtr? Zj—]‘ (IV, QL5 ') =0 (ek%) , (4.13)
j=1

for all » > 0. Thus all coefficients of powers €7 with v < —ka —n + r are closed. A similar
argument handles the loge terms.

Finally, since the coefficient of the loge term is proportional to the Wodzicki residue
resy (Q2), (iii) follows from the discussion in §3.1. O

This clarifies the non-closed weighted traces of [18].

Corollary 4.5: Let V be a Cl<y connection, Q) a weight on £ with scalar leading symbol,
Q = V2 the curvature of V, and tr?(QF) its Q-weighted trace, i.e. tr?(QF) is the finite part
of tr@(Q2*) as e — 0. Then dtr®(Q¥) is an explicit finite linear combination of coefficients
in the asymptotic ezpansion of tr% ([[V, Q]]FIQ’“), jeN

PROOF:  This follows from (4.13) and the fact that > °°, g”, tr ([[V, QI Q) is rear-
rangable. In particular, the coefficient of £° is constructed as stated 0

We now discuss the independence of the closed forms in Theorem 4.4 on the choice of
connection. Note that the hypotheses are more stringent than in Theorem 4.4.

Theorem 4.6: (i) Let Q be a weight on & with scalar leading symbol, and let {V, : t €
[0, 1]} be a smooth family of Cl<o(E) connections such that V, € Q' (B, Cl<_4(£)), for some
s >0, for allt. Then

k
%tr (QF) = dtr©@ (; Qf_JVtQ§_1> +o (8%) ,
for all k € N and for all n > 0.

(#i) Let a = ord(§;) be independent of t. Let ¢ = ord(Q), and set r := q — d, where we
assume that d := ord([Vy, Q]) is independent of t. If s > r — a, then the cohomology class
of the coefficient of €1 in the asymptotic expansion of tr@(QF) is independent of t for all
v < —ka —n+r. The cohomology class of the coefficient of loge - € is independent of t for
all 0 < £ < —ha-mtr,

(#i) Let a = ord(Qy) be independent of t. The cohomology class of the coefficient of
loge in the asymptotic expansion of tr2(QF) is independent of t.
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As with Theorem 4.4, this theorem is only meaningful if s > 0.

PrRoOOF: Mimicking the finite dimensional proof, we have

k k
d , S . . .
@) = ul ZQ?J[%WQW) = trd (ZQW(V?‘“VQQW)
7j=1 7j=1
k Y .
= ¥ vf““Zszfﬂmg*)
j=1
k LY . - k ) .
= 9 vgtzgffvtngl) Z—tr (Vt,Q]]{z_IZQfJVWl)
j=1 Jj=1 J=1
k . ' 00 ;
= dtr? (ZQ?]V,@%) Z ([vt, IrS IZQ’“ Avie’ 1)
7j=1 7j=1 7j=1

The leading term in the asymptotics of i{trQ Vi, Q LSk OFIVQOITY) s of the form
g y T Q j=1%% t

aje” | with

Y —n+jg—d—(j—-1)(g-1)+s—(k—1a S —n+s—(k—1)a

q q
This proves (i). For (ii), we note that this last fraction will be greater than (—n—ka+7)/q
provided s > r — a. As in the previous theorem, the proof of (iii) follows from properties
of the Wodzicki-Chern class of §3.1. O

With the previous two theorems, we have developed a theory of characteristic forms
that explains why Freed’s conditional first Chern form is closed and why its cohomology
class cannot be connection independent.

Corollary 4.7: Let €2 = QG) be the curvature of the Levi-Civita connection for the H:
metric on the loop group LG. Then Freed’s conditional first Chern form coincides with the
weighted first Chern form tr9(Q) for any left invariant scalar weight Q on LG, and hence
15 closed.

PrOOF: The conditional trace of the Levi-Civita curvature in [6] is tr (trpi(€2)), where
trrie denotes the trace with respect to the Killing form in the Lie algebra of GG, and the
outer trace is the ordinary operator trace. In particular, trp;(Q2) is a trace class YDO on
the trivial C bundle over S'. As in [5], for any left invariant scalar weight Q@ we have

. = 1i . —Q) — |3 Q — 1@
tr (treie(S2)) ll_I)% tr (tre(2)e ) lg% tre () = tr%(Q),
so Freed’s conditional first Chern form is the weighted trace tr%(2). Recall that the cur-
vature two-form is a WDO of order a« = —1. Since @ is left invariant and scalar, [V, Q] =

dQ + [0, Q] = [0, Q] has order r = ¢ — 1 = 1. Theorem 4.4 withn =1,g=2,r =1,a = —1
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shows that the constant term ag(£2, Q) in the asymptotic expansion of tr?(f2) is closed.
Since this constant term equals lim,_,o tr% (Q) = tr9(Q), it follows that tr9(Q) is closed for
loop groups. 0

Remark: Theorem 4.6 does not apply to Freed’s conditional first Chern form. In particular,
if we shrink the connection one-form 6 to zero using the family ¢6, we cannot apply Theorem
4.6, since for this family we have s = 0.
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