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Rings

Definition

A ring is a set R together with two binary operations, addition (denoted
a+ b) and multiplication (denoted a · b or ab) such that for all a, b, c ∈ R .

1 a + b = b + a (commutativity of addition)

2 (a + b) + c = a + (b + c) (associativity of addition)

3 There is an additive identity 0 ∈ R such that a + 0 = a for all a ∈ R .

4 For each a ∈ R , there is an element b ∈ R such that a+ b = 0, where
we denote b by −a. (the additive inverse)

5 a(bc) = (ab)c (associativity of multiplication)

6 a(b + c) = ab + ac (distributivity of multiplication over addition)
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We note that axioms 1-4 make (R ,+) into an abelian group.

It is the addition of the multiplication that makes R into a ring.

The most basic example is the integers Z with the usual arithmetic of
addition and multiplication that we’re all familiar with.

Indeed the formalizing and axiomitization of the rules of arithmetic which
gives us the definition of ring.

Timothy Kohl (Boston University) MA542 Lecture January 22, 2025 3 / 14



Beyond the integers, there are a number of natural and familiar
generalizations.

Q the rational numbers with the usual addition/multiplication

R the real numbers with the usual addition/multiplication

C = {a + b i | a, b ∈ R, i2 = −1} the complex numbers
where (a + bi) + (c + di) = (a + c) + (b + d)i
and (because i2 = −1) (a + bi)(c + di) = (ac − bd) + (ad + bc)i

Exercise: Verify that C is a ring.
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We also note that for any integer n ≥ 1 the abelian group Zn becomes a
ring if we define multiplication ’mod n’.

Example: Consider Z4 whose structure we can examine by viewing the
following tables:

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

· 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1
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+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

· 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Recall from basic group theory that the group table (Cayley table) of a
group is a latin square, namely each element in the group appears exactly
once in each row and each column.

This is clearly the case for (Z4,+) however it is not the case for the (Z4, ·)
table which highlights an important fact we’ll explore more
subsequently,namely that for a ring (R ,+, ·) one has that (R , ·) does not
yield a group structure, even though it is closed and associative under
multiplication.
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Two other observations regarding the multiplicative structure of a ring:

There may or may not be a multiplicative identity element.

Even if there is a multiplicative identity, not all elements in the ring
have a multiplicative inverse.

More on this later.
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Also, while R is an abelian group with respect to addition, it is not
required that the multiplication be commutative.

Ex: a non-commutative ring

R = M2(Z) =

{[

a b

c d

]

: a, b, c , d ∈ Z

}

with addition and multiplication being the usual matrix addition and
multiplication.
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In linear algebra one learns that for A,B ,C ∈ M2(Z)

A+ B = B + A

A+ (B + C ) = (A + B) + C

0 =

[

0 0
0 0

]

is the additive identity

A =

[

a b

c d

]

↓

−A =

[

−a −b
−c −d

]

is the additive inverse
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Moreover, one shows that matrix multiplication defined as

[

a b

c d

] [

x y

z w

]

=

[

ax + bz ay + bw

cx + dz cy + dw

]

is associative, and distributes over matrix addition.

However, as you may already know, for matrices A,B it is generally the
case that AB 6= BA.

So one may divide rings into two major categories, commutative vs.
non-commutative. (We generally don’t call a ring ’abelian’.)
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In a ring like Z for example, there is a multiplicative identity 1 which has
the property that

a · 1 = a

1 · a = a

for all a ∈ R .

We call 1 the unity element.

One typically uses the symbol ’1’ for such an element, with some
exceptions, for example in M2(Z) the matrix

I =

[

1 0
0 1

]

the identity matrix

which one may verify has the property that A · I = A and I · A = A for all
A ∈ M2(Z).
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While (most) rings have unity, it is not required in the definition of a ring.

For example, R = 2Z, the set of even integers under the usual addition
and multiplication, has no unity element.

i.e. It’s never true that (2m)(2n) = 2n for any non-zero m, n!

i.e. 1 6∈ 2Z.
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Other examples of rings.

Z[x ]←

{

polynomials with integer coefficients
with usual polynomial addition/multiplication

}

R[x ]←

{

same thing but with real coefficients

}

C 0(R)

= {f : R→ R | f continuous}

where (f + g)(a) = f (a) + g(a) and (f · g)(a) = f (a)g(a)

similarly

C 1(R) = {f : R→ R | f differentiable}

with the same ’pointwise’ addition and multiplication
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We saw earlier the definition of the complex numbers:

C = {a + b i | a, b ∈ R, i2 = −1}

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi)(c + di) = (ac − bd) + (ad + bc)i

(0 + 0i) + (a + bi) = a + bi

(1 + 0i)(a + bi) = a + bi

where, in particular, the multiplication is keyed to the fact that i2 = −1.

Moreover, C can also be viewed as a vector space in that every z ∈ C is of
the form z = a + bi = a · 1 + b · i .

i.e. every element of C is a linear combination of {1, i}
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