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Other Ring Examples

We saw earlier the definition of the complex numbers:

C = {a + b i | a, b ∈ R, i2 = −1}

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi)(c + di) = (ac − bd) + (ad + bc)i

and that C can also be viewed as a vector space in that every z ∈ C is of
the form z = a + bi = a · 1 + b · i .

i.e. every element of C is a linear combination of {1, i}
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This begs the question as to whether one could generalize this idea, and
indeed there is, but there are some startling contrasts in comparison to C.

The Quaternions (Hamiltonians) as a set is

H = {a + bi + cj + dk | a, b, c , d ∈ R}

namely linear combinations of {1, i , j , k} (so that H is additively just like
the vector space R

4) but where the i , j , k have the following properties:

1 · i = i , 1 · j = j , 1 · k = k

i2 = j2 = k2 = −1

ij = k , jk = i , ki = j

ji = −k , kj = −i , ik = −j

where a product (a1 + b1i + c1j + d1k)(a2 + b2i + c2j + d2k) is expanded
out and simplified according to the rules governing 1, i , j , and k as above.
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One may (with some effort!) verify that H is a ring, with additive identity
0 + 0i + 0j + 0k and multiplicative identity 1 + 0i + 0j + 0k .

The other properties (such as associativity) are messy to check, but do
hold.

One of the principal observations is that H is a non-commutative ring,
which stems of course from the rules governing how the ’basis’ elements
are multiplied.
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The similarity to C is obvious in that j and k are two other ’square roots
of −1’ but what is also interesting is the following similarity with C which
we’ll discuss in more generality later.

If z = a + bi ∈ C where (a, b) 6= (0, 0) (i.e. not the zero element of C)
then we have

1

a+ bi
=

1

a + bi

a − bi

a − bi

=
a − bi

a2 + b2

=
a

a2 + b2
+

−b

a2 + b2
i

where (since a, b ∈ R are not both zero) we have that a2 + b2 > 0 and so

a

a2 + b2
+

−b

a2 + b2
i ∈ C

which means every non-zero element of C has a multiplicative inverse,
which makes C into what we call a field.
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In a similar way although requiring a bit more work :-),one may show that
every non-zero h = a + bi + cj + dk ∈ H has a multiplicative inverse as
well.

However, as H is non-commutative, we use the term division ring to
characterize H.

We’ll talk more about fields later on.
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Definition

If R1,R2 . . .Rn are rings then we define the direct product

R1 × R2 × · · · × Rn = {(a1, a2, . . . , an) | ai ∈ Ri}

namely the set of n-tuples of elements with each component coming from
the different rings, and where

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn)

(a1, a2, . . . , an) · (b1, b2, . . . , bn) = (a1 · b1, a2 · b2, . . . , an · bn)

and the operations in the i -th component are computed with respect to
(Ri ,+i , ·i ) (i.e. that ring’s addition and multiplication)
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Note, the zero element is (01, 02, . . . , 0n) where 0i is the zero element of
Ri .

For small examples, we can list out the elements in the direct product, e.g.

Let Z2 = {0, 1} and Z3 = {0, 1, 2} then

Z2 × Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}

where it’s obviously the case that the |Z2 × Z3| = |Z2| · |Z3| = 2 · 3 = 6.
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Note: In some circumstances, such as when each ring is commutative we
write

R1 ⊕ R2 ⊕ · · · ⊕ Rn

in place of R1 × R2 × · · · × Rn.

For now, don’t worry about that distinction.
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Just as one does when first encountering the axioms for a group, there are
some fundamental properties of rings which can be derived solely from the
axioms.

In particular, they don’t depend on thinking of some particular example of
a ring.

Recall for a group (G , ∗) how one proves the uniqueness of the identity.

If there were two identity elements e and e′ then e ∗ e′ = e′ because e is
an identity, but also e ∗ e′ = e since e′ is an identity and so e = e′.
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Properties of Rings

Let R be a ring, and let a, b, c ∈ R .

1 a · 0 = 0 · a = 0

2 a · (−b) = (−a) · b = −(a · b)

3 (−a) · (−b) = ab

4 If we define b − c to mean b + (−c) then a · (b − c) = a · b − a · c
and (b − c) · a = (b · a − c · a). If R has unity 1 then

5 (−1) · a = −a

6 (−1) · (−1) = 1

Let’s examine some of these.
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FACT 1: a · 0 = 0 and 0 · a = 0
PROOF: Consider a · (0 + 0) = a · 0 + a · 0 by the distributive law, but
since 0 is the additive identity, 0 + 0 = 0 so we have

a · 0 = a · 0 + a · 0

and if −a · 0 is the additive inverse of a · 0 (which exists) then

a · 0 = a · 0 + a · 0

↓

a · 0 + (−a · 0) = a · 0 + a · 0 + (−a · 0)

↓

0 = a · 0 + 0

↓

0 = a · 0
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FACT 3 (−a) · (−b) = ab

Going forward, let’s drop the ’·’ for multiplication unless we need it!

PROOF: Consider (−a + a)(−b) which equals 0(−b) which is 0 by FACT
1.
However it also equals (−a)(−b) + a(−b) but by FACT 2, a(−b) = −(ab)
so we have

(−a)(−b) + (−(ab)) = 0

↓

(−a)(−b) = ab

The other facts are left for exercises.
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