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Field of Fractions

Observe that Q = { a
b
| a, b ∈ Z, b 6= 0}.

For domains other than Z we can construct other sets of ’fractions’.

Theorem

Let D be a domain, then there exists a field F (called the field of
fractions, denoted Frac(D)) that contains D as a subring.

Before we get into the proof, we should quantify what it means for D to
be contained as a subring of Frac(D). And the best way is to consider the
canonical example above, Q = Frac(Z).
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In this situation, the fractions of the form {a
1 | a ∈ Z} are a subring which

is ’isomorphic’ to Z (in the same way one views isomorphisms of groups)
in that a 7→ a

1 and a + b 7→ a
1 +

b
1 and ab 7→ a

1
b
1 = ab

1 .

i.e. {a
1 |a ∈ Z} ∼= Z even though we haven’t (yet) defined what an

isomorphism of rings means.
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PROOF:
We construct S = {(a, b) |a, b ∈ D, b 6= 0} and define an equivalence
relation on S as follows:

(a, b) ≡ (c , d) if ad = bc

and let F be the set of equivalence classes under ≡.

If we define a
b
= [(a, b)] (the equivalence class of (a, b)) then we let

a

b
+

c

d
=

ad + bc

bd
a

b

c

d
=

ac

bd

where these make sense since bd 6= 0 unless b = 0 or d = 0 which doesn’t
happen since the elements of S consist of ordered pairs where the second
coordinate is not zero.
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PROOF (continued)
One can verify that 0 in F is 0

1 and 1 in F is 1
1

The most important verification to make is that the operations are not
sensitive to the choice of equivalence class representative.

We have a
b
= a′

b′
if ab′ = a′b and c

d
= c′

d ′ if cd ′ = c ′d and so

a

b
+

c

d
=

ad + bc

bd
*

a′

b′
+

c ′

d ′
=

a′d ′ + b′c ′

b′d ′
**

The question is whether the right hand sides of (*) and (**) are the same.
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Now

(ad + bc)(b′d ′) = db′d ′ + bcb′d ′ = (ab′)dd ′ + b(cd ′)b′ = a′bdd ′ + bc ′d ′b′

(a′d ′ + b′c ′)(bd) = a′d ′bd + b′c ′bd = a′bdd ′ + bc ′d ′b′

and so * and ** are the same.

In a similar way one may verify that a
b
· c
d
= a′

b′
· c′

d ′ .
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We verify that F is a field by realizing that, for b 6= 0, a
b
· b
a
= 1

1 if ab
ab

= 1
1

which is certainly true since (by cross multiplying) obviously ab · 1 = 1 · ab
in D.

Lastly, the set {a
1 |a ∈ D} is a sub-ring of F that (under the addition and

multiplication of fractions defined above) is isomorphic to D.

The overall point of this construction is to construct a ring which naturally
contains the inverses of every element of D.
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In this way, the field F = Frac(D) we’ve constructed is unique in that if D
is the subring of some field E then certainly E contains all the inverses of
every element of D so it contains a subring isomorphic to Frac(D) which
we can diagram as follows:

i.e.
E

▲▲
▲▲

▲▲
▲▲

▲▲
▲

F = Frac(D)

ss
ss
ss
ss
ss
s

D
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As mentioned above, the construction of the fraction field is kind of
natural in that it is basically the field defined by ’allowing’ every non-zero
element of D to be invertible.

Examples: Frac(Z) = Q the prototype example
Frac(Z[i ]) = Q(i)
Most elements a+ bi ∈ Z[i ] do not have inverses since U(Z[i ]) = {±1,±i}
(exercise) and if we take the ’ratio’ of two Gaussian integers a+bi

c+di
we get

a + bi

c + di
=

a + bi

c + di

c − di

c − di

=
(ac − bd) + (ad + bc)i

c2 + d2

=
(ac − bd)

c2 + d2
+

(ad + bc)

c2 + d2
i

∈ Q(i)
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We end this topic with two interesting exercises.

1) If D is a field, show that Frac(D) ∼= D. (i.e. Frac(D) is no ’larger’).

2) What ’fails’ if we try to create Frac(D) when D isn’t a domain?
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Polynomial Rings

Definition

Let R be a commutative ring, for an indeterminate ’x ’ the set

R [x ] = {anx
n + · · ·+ a1x + a0 | ai ∈ R}

where n ≥ 0 and anx
n + · · ·+ a0 = bmx

m + · · ·+ b0 if and only if m = n and ai = bi for each
i from 0 to n is the polynomial ring over R (in the variable ’x ’) if we define the addition and
multiplication as follows:

If f (x) = anx
n + · · · + a0 and g(x) = bmx

m + · · · + b0 then

f (x) + g(x) = (as + bs)x
s + · · · + (a1 + b1)x + (a0 + b0)

where s = max(m, n) and ai = 0 for i > n and bj = 0 for j > m and where

f (x)g(x) = cn+mx
n+m + · · · + c1x + c0

where ck = akb0 + ak−1b1 + · · ·+ a0bk
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Now we’re familiar with how polynomial addition and multiplication work
so this definition just formalizes things.

Here is another basic concept we’re all familiar with.

Definition

For f (x) = anx
n + · · ·+ a1x + a0 ∈ R [x ] (not the zero polynomial) the

degree deg(f (x)) = n if an 6= 0.

What about deg(0) where 0 is the (constant) zero polynomial? (We’ll get
to this in a bit.)

What we’re examining is the role of the ’ring of coefficients’ R in
understanding the ’arithmetic’ of the polynomial ring R [x ].

In particular we have a basic fact about R versus R [x ].
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Proposition

If R is an integral domain then so is R [x ].

Proof.

This isn’t too difficult. If f (x) = anx
n + · · ·+ a0 and

g(x) = bmx
m + · · · + b0 are two non-zero polynomials then, in particular

an 6= 0 and bm 6= 0 so f (x)g(x) = (anbm)x
n+m + (lower degree terms) we

have anbm 6= 0 since R is a domain.

Also, we observe that if R has unity 1 then 1 (viewed as a constant
polynomial) is the unity element of R [x ].
Also, since R is commutative, then R [x ] is commutative. (easy exercise)
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So what about deg(0)? Is it 0? No.

In the definition of R [x ] we have that if f (x) = anx
n + · · ·+ a0 and

g(x) = bmx
m + · · · + b0 then deg(f (x)) = n and deg(g(x)) = m and

f (x)g(x) = (anbm)x
n+m + · · ·+ a0b0

and so we ask, what is deg(f (x)g(x))?

Well, if R is a domain then
deg(f (x)g(x)) = n +m = deg(f (x)) + deg(g(x)) since an 6= 0 and
bm 6= 0 implies anbm 6= 0.
Even if f (x) and g(x) are (non-zero) constant polynomials (whence
deg(f (x)) = 0 and deg(g(x)) = 0) we still have
deg(f (x)g(x)) = deg(f (x)) + deg(g(x))
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So what if g(x) = 0?

In this case f (x)g(x) = 0 so deg(f (x)g(x)) = deg(0) but we want
deg(f (x)g(x)) = def (f (x)) + deg(g(x)) which means

deg(f (x)) + deg(0) = deg(0)

so... this would imply that deg(f (x)) = 0 but f (x) need not have degree 0.

The way to resolve this is to define deg(0) = −∞.

With this definition the deg(f (x)g(x)) = deg(f (x)) + deg(g(x)) holds for
all polynomials in R [x ] when R is a domain.
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