MA542 Lecture

Timothy Kohl

Boston University

February 3, 2025

Observe that $\mathbb{Q} = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \}.$

For domains other than $\ensuremath{\mathbb{Z}}$ we can construct other sets of 'fractions'.

Theorem

Let D be a domain, then there exists a field F (called the field of fractions, denoted Frac(D)) that contains D as a subring.

Before we get into the proof, we should quantify what it means for D to be contained as a subring of Frac(D). And the best way is to consider the canonical example above, $\mathbb{Q} = Frac(\mathbb{Z})$.

In this situation, the fractions of the form $\{\frac{a}{1} \mid a \in \mathbb{Z}\}$ are a subring which is 'isomorphic' to \mathbb{Z} (in the same way one views isomorphisms of groups) in that $a \mapsto \frac{a}{1}$ and $a + b \mapsto \frac{a}{1} + \frac{b}{1}$ and $ab \mapsto \frac{a}{1} \frac{b}{1} = \frac{ab}{1}$.

i.e. $\{\frac{a}{1} \mid a \in \mathbb{Z}\} \cong \mathbb{Z}$ even though we haven't (yet) defined what an isomorphism of rings means.

PROOF:

We construct $S = \{(a, b) | a, b \in D, b \neq 0\}$ and define an equivalence relation on S as follows:

$$(a, b) \equiv (c, d)$$
 if $ad = bc$

and let F be the set of equivalence classes under \equiv .

If we define $\frac{a}{b} = [(a, b)]$ (the equivalence class of (a, b)) then we let

$$\frac{\frac{a}{b} + \frac{c}{d}}{\frac{a}{b} + \frac{c}{d}} = \frac{\frac{ad + bc}{bd}}{\frac{ac}{bd}}$$

where these make sense since $bd \neq 0$ unless b = 0 or d = 0 which doesn't happen since the elements of *S* consist of ordered pairs where the second coordinate is not zero.

PROOF (continued) One can verify that 0 in F is $\frac{0}{1}$ and 1 in F is $\frac{1}{1}$

The most important verification to make is that the operations are not sensitive to the choice of equivalence class representative.

We have
$$rac{a}{b}=rac{a'}{b'}$$
 if $ab'=a'b$ and $rac{c}{d}=rac{c'}{d'}$ if $cd'=c'd$ and so

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} *$$
$$\frac{a'}{b'} + \frac{c'}{d'} = \frac{a'd' + b'c'}{b'd'} **$$

The question is whether the right hand sides of (*) and (**) are the same.

Now

$$(ad + bc)(b'd') = db'd' + bcb'd' = (ab')dd' + b(cd')b' = a'bdd' + bc'd'b'$$
$$(a'd' + b'c')(bd) = a'd'bd + b'c'bd = a'bdd' + bc'd'b'$$

and so * and ** are the same.

In a similar way one may verify that $\frac{a}{b} \cdot \frac{c}{d} = \frac{a'}{b'} \cdot \frac{c'}{d'}$.

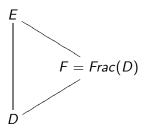
We verify that F is a field by realizing that, for $b \neq 0$, $\frac{a}{b} \cdot \frac{b}{a} = \frac{1}{1}$ if $\frac{ab}{ab} = \frac{1}{1}$ which is certainly true since (by cross multiplying) obviously $ab \cdot 1 = 1 \cdot ab$ in D.

Lastly, the set $\{\frac{a}{1} | a \in D\}$ is a sub-ring of F that (under the addition and multiplication of fractions defined above) is isomorphic to D.

The overall point of this construction is to construct a ring which naturally contains the inverses of every element of D.

In this way, the field F = Frac(D) we've constructed is unique in that if D is the subring of some field E then certainly E contains all the inverses of every element of D so it contains a subring isomorphic to Frac(D) which we can diagram as follows:

i.e.



As mentioned above, the construction of the fraction field is kind of natural in that it is basically the field defined by 'allowing' every non-zero element of D to be invertible.

Examples:
$$Frac(\mathbb{Z}) = \mathbb{Q}$$
 the prototype example
 $Frac(\mathbb{Z}[i]) = \mathbb{Q}(i)$

Most elements $a + bi \in \mathbb{Z}[i]$ do not have inverses since $U(\mathbb{Z}[i]) = \{\pm 1, \pm i\}$ (exercise) and if we take the 'ratio' of two Gaussian integers $\frac{a+bi}{c+di}$ we get

$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \frac{c-di}{c-di}$$
$$= \frac{(ac-bd) + (ad+bc)i}{c^2+d^2}$$
$$= \frac{(ac-bd)}{c^2+d^2} + \frac{(ad+bc)}{c^2+d^2}i$$
$$\in \mathbb{Q}(i)$$

We end this topic with two interesting exercises.

1) If D is a field, show that $Frac(D) \cong D$. (i.e. Frac(D) is no 'larger').

2) What 'fails' if we try to create Frac(D) when D isn't a domain?

Polynomial Rings

Definition

Let R be a commutative ring, for an indeterminate 'x' the set

$$R[x] = \{a_n x^n + \cdots + a_1 x + a_0 \mid a_i \in R\}$$

where $n \ge 0$ and $a_n x^n + \cdots + a_0 = b_m x^m + \cdots + b_0$ if and only if m = n and $a_i = b_i$ for each *i* from 0 to *n* is the polynomial ring over *R* (in the variable 'x') if we define the addition and multiplication as follows:

If
$$f(x) = a_n x^n + \dots + a_0$$
 and $g(x) = b_m x^m + \dots + b_0$ then
 $f(x) + g(x) = (a_s + b_s)x^s + \dots + (a_1 + b_1)x + (a_0 + b_0)$
where $s = max(m, n)$ and $a_i = 0$ for $i > n$ and $b_j = 0$ for $j > m$ and where
 $f(x)g(x) = c_{n+m}x^{n+m} + \dots + c_1x + c_0$
where $c_k = a_k b_0 + a_{k-1}b_1 + \dots + a_0b_k$

Now we're familiar with how polynomial addition and multiplication work so this definition just formalizes things.

Here is another basic concept we're all familiar with.

Definition

For $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in R[x]$ (not the zero polynomial) the degree deg(f(x)) = n if $a_n \neq 0$.

What about deg(0) where 0 is the (constant) zero polynomial? (We'll get to this in a bit.)

What we're examining is the role of the 'ring of coefficients' R in understanding the 'arithmetic' of the polynomial ring R[x].

In particular we have a basic fact about R versus R[x].

Proposition

If R is an integral domain then so is R[x].

Proof.

This isn't too difficult. If $f(x) = a_n x^n + \cdots + a_0$ and $g(x) = b_m x^m + \cdots + b_0$ are two non-zero polynomials then, in particular $a_n \neq 0$ and $b_m \neq 0$ so $f(x)g(x) = (a_n b_m)x^{n+m} + (lower \ degree \ terms)$ we have $a_n b_m \neq 0$ since R is a domain.

Also, we observe that if R has unity 1 then 1 (viewed as a constant polynomial) is the unity element of R[x]. Also, since R is commutative, then R[x] is commutative. (easy exercise) So what about deg(0)? Is it 0? No.

In the definition of R[x] we have that if $f(x) = a_n x^n + \cdots + a_0$ and $g(x) = b_m x^m + \cdots + b_0$ then deg(f(x)) = n and deg(g(x)) = m and

$$f(x)g(x) = (a_nb_m)x^{n+m} + \cdots + a_0b_0$$

and so we ask, what is deg(f(x)g(x))?

Well, if R is a domain then deg(f(x)g(x)) = n + m = deg(f(x)) + deg(g(x)) since $a_n \neq 0$ and $b_m \neq 0$ implies $a_n b_m \neq 0$. Even if f(x) and g(x) are (non-zero) constant polynomials (whence deg(f(x)) = 0 and deg(g(x)) = 0) we still have deg(f(x)g(x)) = deg(f(x)) + deg(g(x)) So what if g(x) = 0?

In this case f(x)g(x) = 0 so deg(f(x)g(x)) = deg(0) but we want deg(f(x)g(x)) = def(f(x)) + deg(g(x)) which means

$$deg(f(x)) + deg(0) = deg(0)$$

so... this would imply that deg(f(x)) = 0 but f(x) need not have degree 0.

The way to resolve this is to define $deg(0) = -\infty$.

With this definition the deg(f(x)g(x)) = deg(f(x)) + deg(g(x)) holds for all polynomials in R[x] when R is a domain.