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Field of Fractions

Observe that Q = {3 | a,b € Z, b # 0}.

For domains other than Z we can construct other sets of 'fractions’.

Let D be a domain, then there exists a field F (called the field of
fractions, denoted Frac(D)) that contains D as a subring.

Before we get into the proof, we should quantify what it means for D to
be contained as a subring of Frac(D). And the best way is to consider the
canonical example above, Q = Frac(Z).
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In this situation, the fractions of the form {2 | a € Z} are a subring which
is 'isomorphic’ to Z (in the same way one views isomorphisms of groups)

. a a b ab _ ab
|nthatar—>Tand a—i—b»—)T—FTand ab»—)TT—T.

i.e. {§ |a€ Z} =7 even though we haven't (yet) defined what an
isomorphism of rings means.
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PROOF:
We construct S = {(a, b) |a,b € D, b # 0} and define an equivalence
relation on S as follows:

(a,b) = (c,d) if ad = bc

and let F be the set of equivalence classes under =.

If we define 7 = [(a, b)] (the equivalence class of (a, b)) then we let

a ¢ ad+ bc
b d " T bd
ac_ac
bd  bd

where these make sense since bd # 0 unless b = 0 or d = 0 which doesn't
happen since the elements of S consist of ordered pairs where the second
coordinate is not zero.
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PROOF (continued)
One can verify that 0 in F is % and 1in F is %

The most important verification to make is that the operations are not
sensitive to the choice of equivalence class representative.

/

We have £ = & if ab’ = a'b and £= g—l/ if cd’ = c'd and so

b
a «c¢ ad + bc
24z *
b d bd
a_’ c add+vd x
v o d vd

The question is whether the right hand sides of (*) and (**) are the same.
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Now

ad + bc = + bc =(a + b(c =a + bc
d + be)(b'd’ db'd’ + beb'd’ b')dd" + b(cd’)b’ 'bdd" + bc'd'b
(a'd" + b'c")(bd) = a'd'bd + b'c'bd = a'bdd’ + bc'd'b’

and so * and ** are the same.

. . a . c_ 4
In a similar way one may verify that 7 - 5 = 7 -

.
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We verify that F is a field by realizing that, for b # 0, 7 - g = % if %
which is certainly true since (by cross multiplying) obviously ab-1=1-ab
in D.

m|m
[opllen

Lastly, the set {§ |a € D} is a sub-ring of F that (under the addition and
multiplication of fractions defined above) is isomorphic to D.

The overall point of this construction is to construct a ring which naturally
contains the inverses of every element of D.
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In this way, the field F = Frac(D) we've constructed is unique in that if D
is the subring of some field E then certainly E contains all the inverses of
every element of D so it contains a subring isomorphic to Frac(D) which

we can diagram as follows:
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As mentioned above, the construction of the fraction field is kind of
natural in that it is basically the field defined by "allowing’ every non-zero
element of D to be invertible.

Examples: Frac(Z) = Q the prototype example
Frac(Z[i]) = Q(/)
Most elements a+ bi € Z[i] do not have inverses since U(Z[i]) = {+1, +i}

(exercise) and if we take the 'ratio’ of two Gaussian integers iig: we get

at+b  a+bic—d

c+di c+dic—di
~ (ac — bd) + (ad + bc)i
B c? + d?
_ (ac —bd) | (ad + bc) .
2+ d? cyd
€ Q(i)
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We end this topic with two interesting exercises.
1) If D is a field, show that Frac(D) = D. (i.e. Frac(D) is no 'larger’).

2) What 'fails’ if we try to create Frac(D) when D isn't a domain?
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Polynomial Rings

Let R be a commutative ring, for an indeterminate 'x' the set

R[x] ={anx"+---+aix+ a0 | a; € R}

where n > 0 and a,x" +---+ag = by,x™ + -+ - + by if and only if m = n and a; = b; for each
i from 0 to n is the polynomial ring over R (in the variable 'x") if we define the addition and
multiplication as follows:

If f(x) = a,x"+--- + ap and g(x) = byx™ + --- + by then
f(x) +8(x) = (as + bs)x* + -+ + (a1 + b1)x + (a0 + bo)
where s = max(m, n) and a; = 0 for i > n and b; = 0 for j > m and where

f(x)g(x) = cramx"™™™ + -+ cax +

where ¢, = axby + ak_1b1 + - - - + agbk
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Now we're familiar with how polynomial addition and multiplication work
so this definition just formalizes things.

Here is another basic concept we're all familiar with.

Definition

For f(x) = apx" + -+ + a1x + ap € R[x] (not the zero polynomial) the
degree deg(f(x)) = nif a, # 0.

What about deg(0) where 0 is the (constant) zero polynomial? (We'll get
to this in a bit.)

What we're examining is the role of the 'ring of coefficients’ R in
understanding the 'arithmetic’ of the polynomial ring R[x].

In particular we have a basic fact about R versus R[x].
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Proposition

If R is an integral domain then so is R[x].

This isn't too difficult. If f(x) = anx" +--- + ap and

g(x) = bymx™ + -+ - + by are two non-zero polynomials then, in particular
ap # 0 and by, # 0 so f(x)g(x) = (anbm)x" ™™ + (lower degree terms) we
have a,b,, # 0 since R is a domain. O

Also, we observe that if R has unity 1 then 1 (viewed as a constant
polynomial) is the unity element of R[x].
Also, since R is commutative, then R[x] is commutative. (easy exercise)
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So what about deg(0)? Is it 07 No.

In the definition of R[x] we have that if f(x) = apx" 4 --- + ap and
g(x) = bymx™ + -+ + by then deg(f(x)) = n and deg(g(x)) = m and

f(x)g(x) = (a,,bm)x”+’" + -+ agho

and so we ask, what is deg(f(x)g(x))?

Well, if R is a domain then

deg(f(x)g(x)) = n+ m = deg(f(x)) + deg(g(x)) since a, # 0 and
bm # 0 implies apb, # 0.

Even if f(x) and g(x) are (non-zero) constant polynomials (whence
deg(f(x)) = 0 and deg(g(x)) = 0) we still have

deg(f(x)g(x)) = deg(f(x)) + deg(g(x))
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So what if g(x) = 07?

(x) = 0 so deg(f(x)g(x)) = deg(0) but we want
def (f(x)) + deg(g(x)) which means

deg(f(x)) + deg(0) = deg(0)

so... this would imply that deg(f(x)) = 0 but f(x) need not have degree 0.

In this case f(x)g
deg(f(x)g(x)) =

The way to resolve this is to define deg(0) = —oc.

With this definition the deg(f(x)g(x)) = deg(f(x)) + deg(g(x)) holds for
all polynomials in R[x] when R is a domain.

Timothy Kohl (Boston University) MAB42 Lecture February 3, 2025 15 /15



