MA542 Lecture

Timothy Kohl

Boston University

February 5, 2025

Although we shall consider R[x] for $R = \mathbb{Z}$ and other domains later, for now we want to examine F[x] for F a field.

Also we shall introduce the following important concept which we shall elaborate on more later on in later sections.

Definition

Let $(R, +_R, \cdot_R)$ and $(S, +_S, \cdot_S)$ be rings, a function $\phi : R \to S$ is a ring homomorphism if (i) $\phi(a +_R b) = \phi(a) +_S \phi(b)$ (ii) $\phi(a \cdot_R b) = \phi(a) \cdot_S \phi(b)$ for all $a, b \in R$. Here is a basic yet important example.

Define $\rho : \mathbb{Z} \to \mathbb{Z}_n$ be given by $\rho(a) = a \mod n$ (i.e. remainder mod n), namely that if a = qn + r then $\rho(a) = r$.

Verifying that ρ is a ring homomorphism is not extremely difficult, but a bit nit-picky.

We note

$$\rho((q_1n + r_1) + (q_2n + r_2)) = \rho(r_1 + r_2)$$

$$\rho((q_1n + r_1)(q_2n + r_2)) = \rho((q_1q_2n + q_1r_2 + q_2r_1)n + r_1r_2) = \rho(r_1r_2)$$
and so, one checks, for $r_1, r_2 \in \{0, \dots, n-1\}$ that
$$\rho(r_1 + r_2) = \rho(r_1) + \rho(r_2) \text{ and } \rho(r_1r_2) = \rho(r_1)\rho(r_2).$$

Definition

If $\phi : R \to S$ is a ring homomorphism that is one-to-one and onto then we call it an isomorphism, and we write $R \cong S$, and say R is isomorphic to S.

We mention this definition to circle back briefly to the construction of Frac(D) from a domain D.

Recall that $Frac(D) = \{\frac{a}{b} \mid a, b \in D, b \neq 0\}$ and we can define $\overline{D} = \{\frac{a}{1} \mid a \in D\} \subseteq Frac(D)$ then \overline{D} is a subring of Frac(D) as we saw earlier.

If we define $\phi: D \to \overline{D}$ by $\phi(a) = \frac{a}{1}$ then one can check that ϕ is a ring homomorphism, and that it is one-to-one and onto.

As such $D \cong \overline{D}$.

Now, let's get back to polynomials.

Theorem

If E is a field with a subfield $F \subseteq E$ and $\alpha \in E$ then the evaluation function

9

$$\phi_{\alpha}: F[x] \to E$$

given by $\phi_{\alpha}(f(x)) = f(\alpha)$ is a homomorphism.

Before we consider the proof, let's point out why we *don't* define $\phi_{\alpha}: F[x] \to F$. The reason for this is that we want to consider polynomials with coefficients in a field F which may have roots which lie in some *larger* field F.

A basic example to consider is this $\phi_i : \mathbb{R}[x] \to \mathbb{C}$ where now $\phi_i(x^2 + 1) = i^2 + 1 = 0$.

Indeed this is one of the things we wish to understand, namely quantifying when a given polynomial with coefficients in F has roots in a larger field E.

Proof.

Let $f(x) = a_n x^n + \cdots + a_0$ and $g(x) = b_m x^m + \cdots + b_0$ be polynomials in F[x].

Then $\phi_{\alpha}(f(x)) = a_n \alpha^n + \dots + a_0$ and since $\alpha \in E$ then $\alpha^i \in E$ and since $a_i \in F$ then $a_i \in E$ and so $a_i \alpha^i \in E$, so $f(\alpha) \in E$.

And so $\phi_{\alpha}(f(x) + g(x)) = (a_n \alpha^n + \dots + a_0) + (b_m \alpha^m + \dots + b_0)$ which we can easily see is equal to $\phi_{\alpha}(f(x)) + \phi_{\alpha}(g(x))$.

And similarly it's not hard to show $\phi_{\alpha}(f(x)g(x)) = \phi_{\alpha}(f(x))\phi_{\alpha}(g(x))$.

By looking at $\phi_{\alpha} : F[x] \to E$ for $F \subseteq E$ and $\alpha \in E$ we are looking towards questions about the solvability of equations.

In particular if $f(x) \in F[x]$, then $\alpha \in E$ is a zero or root of f(x) if $\phi_{\alpha}(f(x)) = 0$, i.e. $f(\alpha) = 0$.

Example: Consider $\phi_{\sqrt{2}} : \mathbb{Q}[x] \to \mathbb{R}$ and observe that for $f(x) = x^2 - 2$ we have $\phi_{\sqrt{2}}(f(x)) = 0$.

Moreover, and this is important, for **no** $\alpha \in \mathbb{Q}$ do we have that $\phi_{\alpha}(f(x)) = 0$.

i.e. $f(x) \in \mathbb{Q}[x]$ but f(x) = 0 has no solutions in \mathbb{Q} but rather in a larger field containing \mathbb{Q} .

Moreover, if for $f(x) \in F[x]$ one has f(x) = g(x)h(x) for polynomials $g(x), h(x) \in F[x]$ (i.e. f(x) is factorable) then since ϕ_{α} is a homomorphism then we have

$$\phi_{\alpha}(g(x)h(x)) = \phi_{\alpha}(g(x))\phi_{\alpha}(h(x)) = g(\alpha)h(\alpha)$$

so that $\phi_{\alpha}(f(x)) = 0$ implies that $g(\alpha)h(\alpha) = 0$ which, since E is a field (and therefore a domain) means either $g(\alpha) = 0$ and/or $h(\alpha) = 0$.

Moreover, if $\alpha \in F$ then $\phi_{\alpha}(f(x)) = 0$ means α is a root of one of the factors of f(x) in F[x].

The following is fundamental to discussing the roots of a polynomial, and to understanding the structure of F[x] as a ring.

Theorem (Division Algorithm)

Let F be a field, and $f(x), g(x) \in F[x]$ with $g(x) \neq 0$, then there exists unique polynomials q(x), r(x) in F[x] such that

f(x) = q(x)g(x) + r(x) think 'q' for quotient and 'r' for remainder

where deg(r(x)) < deg(g(x)).

Note, it's possible (and indeed important to consider) the case where r(x) = 0.

$$f(x) = q(x)g(x) + r(x)$$

PROOF: The proof is based on induction on $n = deg(f(x))$.

If f(x) = 0 or deg(g(x)) > deg(f(x)) then q(x) = 0 and r(x) = f(x).

So if deg(f(x)) = n and deg(g(x)) = m where $n \ge m$ where say

$$f(x) = a_n x^n + \dots + a_0$$

$$g(x) = b_m x^m + \dots + b_0$$

then $a_n \neq 0$ and $b_m \neq 0$, and in particular $b_m^{-1} \in F$.

So let
$$t = n - m$$
 and define $q_1(x) = c_t x^t$ where $c_t = \frac{a_n}{b_m}$.

PROOF (continued) Then

$$q_1(x)g(x) = (b_m \frac{a_n}{b_m})x^n + \dots$$
$$= a_n x^n + \dots$$

which means $deg(f(x) - q_1(x)g(x)) < n$ so by induction we may assume the theorem holds for $f(x) - q_1(x)g(x)$.

So there exists polynomials $q_2(x)$ and r(x) such that $f(x) - q_1(x)g(x) = q_2(x)g(x) + r(x)$ which means

$$f(x) = (q_2(x) + q_1(x))g(x) + r(x) = q(x)g(x) + r(x)$$

i.e. $q(x) = q_1(x) + q_2(x)$ so that indeed, we have a quotient 'q(x)' and a remainder 'r(x)' so that f(x) = q(x)g(x) + r(x).

Timothy Kohl (Boston University)

MA542 Lecture

PROOF (continued)

The last part to check is that if
$$f(x) = q(x)g(x) + r(x)$$
 and $f(x) = \tilde{q}(x)g(x) + \tilde{r}(x)$ that $\tilde{q}(x) = q(x)$ and $\tilde{r}(x) = r(x)$.

But this implies that

$$f(x) - f(x) = (q(x)g(x) + r(x)) - (\tilde{q}(x)g(x) + \tilde{r}(x))$$

= $(q(x) - \tilde{q}(x))g(x) + (r(x) - \tilde{r}(x))$

but f(x) - f(x) = 0 so, by degree considerations $q(x) - \tilde{q}(x) = 0$ and $r(x) - \tilde{r}(x) = 0$ so $q(x) = \tilde{q}(x)$ and $r(x) = \tilde{r}(x)$.

What we've just done is basically 'polynomial long division'. For example: $\frac{7}{2}x^2 - x - \frac{9}{4}$

$$2x^{2} + 2x + 1) \underbrace{7x^{4} + 5x^{3} - 3x^{2} - 2x - 1}_{-7x^{4} - 7x^{3} - \frac{7}{2}x^{2}} \\ -2x^{3} - \frac{13}{2}x^{2} - 2x \\ 2x^{3} + 2x^{2} + x \\ -\frac{9}{2}x^{2} - x - 1 \\ \frac{9}{2}x^{2} + \frac{9}{2}x + \frac{9}{4} \\ \frac{7}{2}x + \frac{5}{4} \end{aligned}$$

Note, in the above example we have to be able to divide '2' into '7' to get the leading term $\frac{7}{2}x^2$ in the quotient, which explains why we insist on the polynomials being in F[x] for F a field.

i.e. If we tried to do this in $\mathbb{Z}[x]$ say rather than $\mathbb{Q}[x]$ then it would fail since $q(x) = \frac{7}{2}x^2 - x - \frac{9}{4} \notin \mathbb{Z}[x]$.

For $f(x), g(x) \in F[x]$ (where $g(x) \neq 0$) there exists a quotient q(x) and remainder r(x) where f(x) = q(x)g(x) + r(x) where either r(x) = 0 or deg(r(x)) < deg(g(x)).

This mirrors the Division Algorithm in \mathbb{Z} which says that for $a, m \in \mathbb{Z}$, if $m \neq 0$ then a = qm + r for $0 \leq r \leq m - 1$.

There are a number of consequences of the division algorithm, some of which are familiar facts from high-school algebra.

Corollary

Let F be a field and $a \in F$ and if $f(x) \in F[x]$ then f(a) is the remainder term in the division of f(x) by x - a.

Proof.

Why? Well since deg(x - a) = 1 then when one divides f(x) by x - a the remainder must either be 0 or degree 0, i.e. a constant 'number' r. So f(x) = q(x)(x - a) + r and thus f(a) = q(a)(a - a) + r i.e. f(a) = r. From this we get other important facts.

Corollary

Let $f(x) \in F[x]$ then $a \in F$ is a zero of f(x) if and only if x - a is a factor of f(x).

Proof.

Again if we divide f(x) by x - a then f(x) = q(x)(x - 1) + r for a constant r (which could be zero).

So f(a) = q(a)(a - a) + r = r so if f(a) = 0 then r = 0 and f(x) = q(x)(x - a) (i.e. a multiple of x - a) and if $r \neq 0$ then (x - a) does *not* evenly divide f(x)!