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Although we shall consider R[x] for R = Z and other domains later, for
now we want to examine F[x] for F a field.

Also we shall introduce the following important concept which we shall
elaborate on more later on in later sections.

Definition

Let (R, +r, gr) and (S,+s,-s) be rings, a function ¢ : R — S is a
ring homomorphism if

(i) ¢(a+r b) = ¢(a) +s ¢(b)

(i)) ¢(a-r b) = ¢(a) s ¢(b)

for all a,b € R.
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Here is a basic yet important example.

Define p : Z — Z, be given by p(a) = a mod n (i.e. remainder mod n),
namely that if a = gn + r then p(a) =r.

Verifying that p is a ring homomorphism is not extremely difficult, but a
bit nit-picky.

We note
p((qin+ n) + (qan+r2)) = p(n + r2)

p((gin+ r)(gan+ r2)) = p((gig2n + qir2 + gari)n + rir) = p(rir)

and so, one checks, for ri,r» € {0,...,n— 1} that
p(r+ r2) = p(r) + p(r2) and p(rir2) = p(r1)p(r2).
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Definition

If $: R — S is a ring homomorphism that is one-to-one and onto then we
call it an isomorphism, and we write R = S, and say R is isomorphic to S.

We mention this definition to circle back briefly to the construction of
Frac(D) from a domain D.

Recall that Frac(D) = {f | a,b € D,b# 0} and we can define
D = {% | ac D} C Frac(D) then D is a subring of Frac(D) as we saw
earlier.

If we define ¢ : D — D by ¢(a) = 2 then one can check that ¢ is a ring
homomorphism, and that it is one-to-one and onto.

As such D = D.

Now, let's get back to polynomials.
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If E is a field with a subfield F C E and o« € E then the evaluation
function

¢a: F[x] = E
given by ¢ (f(x)) = f(«) is a homomorphism.

Before we consider the proof, let's point out why we don't define

¢a : F[x] = F.

The reason for this is that we want to consider polynomials with
coefficients in a field F which may have roots which lie in some larger field
E.

A basic example to consider is this ¢; : R[x] — C where now
pi(x>+1)=i2+1=0.

Indeed this is one of the things we wish to understand, namely quantifying
when a given polynomial with coefficients in F has roots in a larger field E.
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Proof.
Let f(x) = apx" + -+ ap and g(x) = bmx™ + - - - + by be polynomials in
Fx].

Then ¢o(f(x)) = asa” + - -+ + ap and since a € E then o' € E and since
a; € F then a; € E and so aja’ € E, so f(a) € E.

And so ¢o(f(x) + g(x)) = (ana” + - - + ag) + (bma™ + - - - + bg) which
we can easily see is equal to ¢, (f(x)) + ¢a(g(x)).

And similarly it's not hard to show ¢, (f(x)g(x)) = ¢a(f(x))da(g(x)). O
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By looking at ¢, : F[x] — E for F C E and a € E we are looking towards
questions about the solvability of equations.

In particular if f(x) € F[x], then « € E is a zero or root of f(x) if
da(f(x)) =0, ie. f(a)=0.

Example: Consider ¢ 5 : Q[x] — R and observe that for f(x) = x? —2 we
have ¢ 5(f(x)) = 0.

Moreover, and this is important, for no o € Q do we have that

¢a(f(x)) = 0.

i.e. f(x) € Q[x] but f(x) = 0 has no solutions in Q but rather in a larger
field containing Q.
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Moreover, if for f(x) € F[x] one has f(x) = g(x)h(x) for polynomials
g(x), h(x) € F[x] (i.e. f(x) is factorable) then since ¢, is a
homomorphism then we have

Pa(8(x)h(x)) = dalg(x))a(h(x)) = g(@)h(a)
so that ¢, (f(x)) = 0 implies that g(a)h(c«) = 0 which, since E is a field

(and therefore a domain) means either g(«) = 0 and/or h(a) = 0.

Moreover, if o € F then ¢o(f(x)) = 0 means « is a root of one of the
factors of f(x) in F[x].
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The following is fundamental to discussing the roots of a polynomial, and
to understanding the structure of F[x] as a ring.

Theorem (Division Algorithm)

Let F be a field, and f(x),g(x) € F[x] with g(x) # 0, then there exists
unique polynomials q(x),r(x) in F[x]| such that

f(x) = q(x)g(x) + r(x) think 'q’ for quotient and 'r’ for remainder

where deg(r(x)) < deg(g(x)).

Note, it's possible (and indeed important to consider) the case where
r(x) = 0.
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f(x) = a(x)g(x) + r(x)
PROOF: The proof is based on induction on n = deg(f(x)).

If f(x) =0 or deg(g(x)) > deg(f(x)) then g(x) =0 and r(x) = f(x).

So if deg(f(x)) = n and deg(g(x)) = m where n > m where say

f(x)=apx"+ -+ ao
g(x) = bmx -+ by

then a, # 0 and b, # 0, and in particular b, € F.

So let t = n— m and define g1(x) = c:x* where ¢; = g—;.
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PROOF (continued) Then

q1(x)g(x) = (bm =

=ax"+ ...

which means deg(f(x) — q1(x)g(x)) < n so by induction we may assume
the theorem holds for f(x) — g1(x)g(x).

So there exists polynomials g2(x) and r(x) such that
f(x) — q1(x)g(x) = g2(x)g(x) + r(x) which means

F(x) = (q2(x) + q1(x))g(x) + r(x) = a(x)g(x) + r(x)

i.e. g(x) = qi(x) + g2(x) so that indeed, we have a quotient 'g(x)" and a
remainder 'r(x)’ so that f(x) = q(x)g(x) + r(x).
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PROOF (continued)

The last part to check is that if f(x) = g(x)g(x) + r(x) and
f(x) = g(x)g(x) + F(x) that g(x) = q(x) and ¥(x) = r (x).

But this implies that

f(x) = f(x) = (a(x)g(x) + r(x)) — (4(x)g(x) + F(x))
= (q(x) = a(x))g(x) + (r(x) = F(x))

but f(x) — f(x) = 0 so, by degree considerations g(x) — g(x) =0 and
r(x) — F(x) = 0 so g(x) = g(x) and r(x) = ¥(x).
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What we've just done is basically 'polynomial long division’.

For example: %x2 - X — %
2x2+2x+1) 7x* +5x3 —3x%2 —2x —1

—Tx* —7x3 — %Xz

—2x3 — %Xz — 2x
2x3 +2x%2 +x

—2x2 —x -1
9,2 9 9
X" T Xt g

7 5
XT3

Note, in the above example we have to be able to divide 2" into '7' to get

7

the leading term §x2 in the quotient, which explains why we insist on the

polynomials being in F[x] for F a field.

i.e. If we tried to do this in Z[x] say rather than Q[x] then it would fail

since q(x) = £x? — x — § € Z[x].
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Consequences of the Division Algorithm for F|[x]

For f(x),g(x) € F[x] (where g(x) # 0) there exists a quotient g(x) and
remainder r(x) where f(x) = q(x)g(x) + r(x) where either r(x) =0 or
deg(r(x)) < deg(g(x)).

This mirrors the Division Algorithm in Z which says that for a, m € Z, if
m#Qthena=gm+rfor0<r<m-1.
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There are a number of consequences of the division algorithm, some of
which are familiar facts from high-school algebra.

Corollary

Let F be a field and a € F and if f(x) € F[x] then f(a) is the remainder
term in the division of f(x) by x — a.

Proof.

Why? Well since deg(x — a) = 1 then when one divides f(x) by x — a the
remainder must either be 0 or degree 0, i.e. a constant 'number’ r.

So f(x) = q(x)(x — a) + r and thus f(a) = g(a)(a — a) + r i.e.

f(a)=r. O

| \

A,
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From this we get other important facts.

Corollary

Let f(x) € F[x] then a € F is a zero of f(x) if and only if x — a is a factor
of f(x).

| A\

Proof.
Again if we divide f(x) by x — a then f(x) = q(x)(x — 1) +r for a
constant r (which could be zero).

So f(a) = q(a)(a—a)+ r=rsoif f(a) =0 then r =0 and
f(x) = g(x)(x — a) (i.e. a multiple of x — a) and if r # 0 then (x — a)
does not evenly divide f(x)! O

v
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