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More on Roots and Linear Factors

We saw this consequence of the Division Algorithm.

Corollary

Let f (x) ∈ F [x ] then a ∈ F is a zero of f (x) if and only if x − a is a factor

of f (x).

This leads to another well-known fact we’re familiar with.

Corollary

A polynomial of degree n over a field has at most n zeros counting

multiplicity.

Timothy Kohl (Boston University) MA542 Lecture February 7, 2025 2 / 16



Proof.

(Induction on n) If f (x) is constant then f (x) has no zeros unless
f (x) = 0.
Otherwise, let a be a zero of a multiplicity k in F i.e. f (x) is divisible by
(x − a)k but not (x − a)k+1 so f (x) = q(x)(x − a)k where q(a) 6= 0.
Since deg(f (x) = k + deg(q(x)) where deg(q(x)) = n − k where k ≤ n.
If f (x) has no other zeros we’re done, otherwise let b be a different zero of
f (x) then f (b) = 0 = (b − a)kq(b) which implies q(b) = 0 since
(b − a) 6= 0.
So any other root of f (x) is a root of a degree n − k polynomial q(x) so
inductively q(x) has at most n − k roots which means that f (x) has at
most k + (n − k) = n roots.
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Now zeros a ∈ F of f (x) ∈ F [x ] correspond to factors of the form (x − a)n

but we may consider factorization more generally.

Definition

A non-constant polynomial f (x) ∈ F [x ] is irreducible over F if f (x) cannot
be expressed as a product of two lower degree polynomials.
If f (x) is not irreducible it is reducible.

For example, x2 − 2 ∈ Q[x ] is irreducible over Q and x2 + 5x + 6 is
reducible over Q since x2 + 5x + 6 = (x + 2)(x + 3).

Note, if we view x2 − 2 ∈ R[x ] then the situation is different since then
x2 − 2 = (x −

√
2)(x +

√
2) since x ±

√
2 ∈ R[x ] (but not in Q[x ] of

course.)
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For low degree polynomials in F [x ] we have:

Proposition

Let f (x) ∈ F [x ] for F a field where deg(f (x)) = 2 or 3, then f (x) is
reducible if and only if f (x) has a zero in F .

Proof.

Say f (x) = g(x)h(x) where deg(g(x)) < deg(f (x)) and
deg(h(x)) < deg(f (x)) then without loss of generality we may assume
deg(g(x)) = 1 and deg(h(x)) = 1 or 2.

So g(x) = ax + b where −a−1b is therefore a zero of g(x) and therefore
of f (x) too.

Conversely, if f (c) = 0 for some c ∈ F then x − c is a divisor of f (x) and
we have f (x) = (x − a)h(x) where, since deg(x − c) = 1 means
deg(h(x)) = 1 or 2.
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Now if f (x) ∈ Z[x ] then we may view f (x) as an element of Q[x ] and if
f (x) = g(x)h(x) for g(x), h(x) ∈ Q[x ] of lower degree, then can we show
that f (x) is factorable as a product of polynomials in Z[x ]?

The answer, surprisingly, is yes, but we need to establish some technical
facts.

Definition

The content of a polynomial
f (x) = anx

n + an−1x
n−1 + · · ·+ a1x + a0 ∈ Z[x ] is

c(f (x)) = gcd(an, an−1, . . . , a1, a0) the greatest common divisor of the
coefficients.
A polynomial f (x) ∈ Z[x ] if primitive if c(f (x)) = 1.

e.g. c(3x2 + 12x + 6) = 3, c(x2 + 2x + 3) = 1.
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Lemma (Gauss’ Lemma)

The product of two primitive polynomials is primitive.

PROOF: Given f (x) ∈ Z[x ] and a prime p, if one reduces the coefficients
mod p then one gets a polynomial f̄ (x) ∈ Zp[x ], which is important since
Zp is a field.

Moreover, it’s easy to show that for f (x), g(x) ∈ Z[x ] that if
h(x) = f (x)g(x) then h̄(x) = f̄ (x)ḡ (x).

Now if c(f ) is the content of f and c(g) is the content of g then assume
c(f ) = 1 and c(g) = 1 and suppose c(fg) 6= 1.

As such there is some prime p that divides the coefficients of h = fg and
so h̄ = 0 in Zp[x ].
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PROOF: (continued)
However h̄ = f̄ ḡ where f̄ , ḡ ∈ Zp[x ] which (since Zp[x ] is a domain)
means that either f̄ = 0 or ḡ = 0 in Zp[x ].

If say f̄ = 0 in Zp[x ] then every coefficient f ∈ Z[x ] must be divisible by p

which contradicts the assumption that c(f ) = 1.

As such c(f ) = 1 and c(g) = 1 implies c(fg) = 1.

We can now prove that for an integer polynomial, being reducible over Q
implies reducibility over Z.
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Theorem

Let f (x) ∈ Z[x ] if f (x) is reducible over Q then it is reducible over Z.

PROOF: Let f (x) = g(x)h(x) for g(x), h(x) ∈ Q[x ]. We may assume that
f (x) is primitive since otherwise we could divide f (x) and g(x) by c(f (x)).

Let

a = lcm(denominators of coefficients of g(x))

b = lcm(denominators of coefficients of h(x))

then abf (x) = (ag(x))(bh(x)) where now ag(x) ∈ Z[x ] and bh(x) ∈ Z[x ].
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Let c1 = c(ag(x)) and c2 = c(bh(x)) so ag(x) = c1g1(x) for some
g1(x) ∈ Z[x ] with c(g1(x)) = 1 and similarly bh(x) = c2h2(x) for
h2(x) ∈ Z[x ] where c(h2(x)) = 1.

Thus
abf (x) = c1c2g1(x)h1(x) *

but we have c(abf (x)) = ab and c(c1c2g1(x)h2(x)) = c1c2 but then (*)
above implies that f (x) = g1(x)h1(x) where g1(x) and h1(x) are
polynomials in Z[x ].
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As a consequence, we have:

Corollary

If f (x) = xn + an−1x
n−1 + · · ·+ a1x + a0 ∈ Z[x ] with a0 6= 0 and if f (x)

has a zero in m ∈ Q then we may assume m ∈ Z where m|a0.

Proof.

If f (x) has a zero a ∈ Q then f (x) has a linear factor x − a ∈ Q[x ].

But then the previous theorem implies that f (x) has a factorization with a
linear factor in Z[x ].

ergo f (x) = (x −m)(xn−1 + · · · − a0
m
) where (x −m) ∈ Z[x ] and also

(xn−1 + · · · − a0
m
) ∈ Z[x ] as well.

But this means a0
m

∈ Z so m divides a0.
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Mod p Irreducibility

In Gauss’ Lemma we used the fact that ρ : Z[x ] → Zp[x ] given by
ρ(f ) = f̄ is a homomorphism.

We can use this idea further.

Theorem (mod p irreducibility)

Let p be a prime and suppose that f (x) ∈ Z[x ] where deg(f (x)) ≥ 1, let
f̄ (x) ∈ Zp[x ].

If f̄ (x) is irreducible over Zp[x ] and deg(f̄ (x)) = deg(f (x)) then f (x) is
irreducible over Q.
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PROOF: If f (x) is reducible over Q then its reducible over Z so
f (x) = g(x)h(x) where deg(g(x)) < deg(f (x)) and
deg(h(x)) < deg(f (x)).

Now suppose f̄ (x) is irreducible over Zp[X ] then since f̄ (x) = ḡ(x)h̄(x)
where deg(f̄ (x)) = deg(f (x)) then

deg(ḡ(x)) ≤ deg(g(x))

deg(h̄(x)) ≤ deg(h(x))

but deg(f̄ (x)) = deg(ḡ(x)) + deg(h̄(x)) and
deg(f̄ (x)) = deg(f (x)) = deg(g(x)) + deg(h(x)) so
deg(ḡ(x)) = deg(g(x)) and deg(h̄(x)) = deg(h(x)) so f̄ (x) is reducible in
fact. (contradiction)
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Example: f (x) = x3 + 3x + 2 ∈ Z[x ] is irreducible.

Let p = 5 and consider f̄ (x) = x3 + 3x + 2 ∈ Z5[x ].

If f̄ (x) is reducible in Z5[x ] it must be that it has a root in Z5 since it is
degree 3.

However, one can verify that for no a ∈ Z5 = {0, 1, 2, 3, 4} do we have
f̄ (a) = 0.

So f̄ (x) is irreducible in Z5[x ] and has the same degree so it must be
irreducible over Z and hence over Q!
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Note, the converse is false since, for example, if f (x) = x3 + 3x + 2 then
in Z3[x ] we have f̄ (x) = x3 + 2 and for 1 ∈ Z3 we have f̄ (1) = 0 so that,
in Z3[x ], x − 1 | f̄ (x).

That is, it’s reducible in Z3[x ], but of course, we already know it’s
irreducible in Z.
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Note also that in Zp[x ] there are only a finite number of polynomials of a
given degree.

So if say deg(f (x)) = 4 then if for some p we have that f̄ (x) ∈ Zp[x ] has
degree 4 as well then if its reducible we have f̄ (x) = ḡ(x)h̄(x).

Then either deg(ḡ(x)) = 1 or deg(ḡ(x)) = deg(h̄(x)) = 2 and one could
check (by brute force) to rule out either possibility.

Why? The reason is that for a given prime p, there are only a finite
number of polynomials of given degree n since if

f (x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

then there are p − 1 choices of an and p choices for each ai for i < n.
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