MA542 Lecture

Timothy Kohl

Boston University

February 10, 2025

Another important irreducibility test is this one due to Eisenstein in 1850.

Theorem

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$ and if there is a prime p such that $p \nmid a_n$ but $p \mid a_{n-1}, \ldots, p \mid a_0$ and $p^2 \nmid a_0$ then f(x) is irreducible over \mathbb{Q} .

Proof.

Recall that f(x) irreducible over \mathbb{Q} implies f(x) is irreducible over \mathbb{Z} . So say f(x) = g(x)h(x) for $g(x), h(x) \in \mathbb{Z}[x]$ where $1 \leq deg(g(x)) < n$ and $1 \leq deg(h(x)) < n$.

 $g(x) = b_r x^r + \dots + b_0$ $h(x) = c_s x^s + \dots + c_0$

Since $p \mid a_0$ but $p^2 \nmid a_0$ then $p \mid b_0 c_0$ which means $p \mid b_0$ or $p \mid c_0$ but not both.

So say $p \mid b_0$ and $p \nmid c_0$. Since $p \nmid a_n = b_r c_s$ then $p \nmid b_r$ so there is a least integer t such that $p \nmid b_t$.

We have $a_t = b_t c_0 + \dots + b_0 c_t$ and by assumption $p \mid a_t$ and by choice of $t, p \mid b_{t-1}, \dots, b_0$ ergo $p \mid b_t c_0$ but this is impossible since $p \nmid b_t$ and $p \nmid c_0$.

With this theorem, we can manufacture examples of irreducible polynomials (of any degree) at will.

For example: $x^5 - 9x^4 + 3x^2 - 12$ satisfies the conditions with p = 3 since $p \nmid 1$, $p \mid -9$, $p \mid 3$, $p \mid 12$, but $p^2 \nmid 12$.

What's also useful about Eisenstein's criterion is that it is easy to make the examples have as large a degree as desired, since the irreducibility is deduced in terms of the coefficients.

High degree examples aren't as easy to construct/verify with the Mod p irreducibility test we discussed earlier.

An important class of examples where the Eisenstein criteria is used are the cyclotomic polynomials

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p - 1} + x^{p - 2} + \dots + x + 1$$

which are ubiquitous throughout number theory etc.

The term 'cyclotomic' relates to the act of splitting a circle into (in this case *p* equal sized arcs), each of which corresponds to a sector of the circle of angle $\frac{2\pi}{p}$.

The reason for this connection is due to the roots of the polynomial $x^p - 1$

A root of $x^p - 1$ is a number whose p^{th} power is 1, and one may show that the p (distinct!) roots are ζ_p^i where $\zeta_p = e^{i\frac{2\pi}{p}}$ is primitive p^{th} root of unity.

There is nice visual for this we can give which shows where the term cyclotomic.

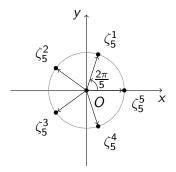
(N.B. The polynomial $x^p - 1$ is actually *not* irreducible since x = 1 is a root, and therefore $x^p - 1$ is divisible by x - 1, but if we factor out this root, then the result is $\Phi_p(x)$ which is irreducible as well shall demonstrate.)

Recall from calculus 2 that
$$e^{it} = cos(t) + isin(t)$$
 and so
 $e^{i\frac{2\pi}{p}} = cos(\frac{2\pi}{p}) + isin(\frac{2\pi}{p})$ and so $(e^{i\frac{2\pi}{p}})^k = e^{ik\frac{2\pi}{p}} = cos(k\frac{2\pi}{p}) + isin(k\frac{2\pi}{p})$.

As such
$$(\zeta_p^k)^p = (e^{ik\frac{2\pi}{p}})^p = e^{ik2\pi} = cos(k2\pi) + isin(k2\pi) = 1$$
 for each k from 0 to $p-1$.

And one can check that each ζ_p^k is distinct as k varies from 0 to p-1. Note also, $\zeta_p^p = \zeta_p^0 = 1$. These points all lie on the unit circle $x^2 + y^2 = 1$ and equidistributed at angles $k\frac{2\pi}{p}$.

So for p = 5 we have 5 roots of unity distributed around the circle at multiples of $2\pi/5$ (72 degrees).



and we see that these arcs subdivide the circle evenly.

Again, note
$$\zeta_5^5 = \zeta_5^0 = 1$$
 of course.

Timothy Kohl (Boston University)

MA542 Lecture

In order to prove the irreducibility of $\Phi_p(x)$ we actually need a small but important observation about Binomial coefficients.

If p is a prime then $\binom{p}{k} = \frac{p!}{k!(p-k)!}$ and for k = 0 and k = p we have $\binom{p}{0} = 1$ and $\binom{p}{p} = 1$.

For 0 < k < p we observe that, since p is prime, p does **not** divide k!, nor does it divide (p - k)!, but that obviously p divides p!.

As such p divides $\binom{p}{k}$ for any 0 < k < p.

We also need to recall the basic binomial theorem, namely:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

where, in a moment, our 'n' will be a prime p.

We still wish to show the following.

Proposition

For each prime p, Φ_p is irreducible.

Proof.

Let

$$\begin{aligned} f(x) &= \Phi_p(x+1) \\ &= \frac{(x+1)^p - 1}{(x+1) - 1} \\ &= x^{p-1} + \binom{p}{1} x^{p-2} + \binom{p}{2} x^{p-3} + \dots + \binom{p}{p-1} \end{aligned}$$

and so every coefficient of f(x) (except that of x^{p-1}) is divisible by p, but $p^2 \nmid {p \choose p-1}$ and therefore by Eisenstein's criterion, f(x) is irreducible. But f(x) irreducible certainly implies that $\Phi_p(x)$ is irreducible since if $\Phi_p(x) = g(x)h(x)$ then f(x) = g(x+1)h(x+1). For p = 3 for example, we get that ζ_3 is one of the roots of $\Phi_3(x) = x^2 + x + 1$.

By the quadratic formula the two (complex) roots are

$$\frac{-1\pm\sqrt{-3}}{2}$$

and one can show that $\zeta_3 = \frac{-1 + \sqrt{-3}}{2}$ since $sin(\frac{2\pi}{3}) > 0$.

And as with *i* giving rise to $\mathbb{Q}(i)$ one can also contemplate the field obtained by 'adjoining' ζ_3 to \mathbb{Q} .

In $\mathbb{Q}(\zeta_3) = \{a + b\zeta_3 \mid a, b \in \mathbb{Q}\}$ one adds elements by the rule $(a + b\zeta_3) + (c + d\zeta_3) = (a + c) + (b + d)\zeta_3$ but the multiplication requires a bit of analysis:

$$(a+b\zeta_3)(c+d\zeta_3) = (ac+bd\zeta_3^2) + (ad+bc)\zeta_3$$

so it's not clear that this operation is closed.

But we can observe that ζ_3 is a root of $x^2 + x + 1$ which means $\zeta_3^2 + \zeta_3 + 1 = 0$ so that $\zeta_3^2 = -\zeta_3 - 1$ which means

$$(\mathsf{ac} + \mathsf{bd}\zeta_3^2) + (\mathsf{ad} + \mathsf{bc})\zeta_3 = (\mathsf{ad} - \mathsf{bd}) + (\mathsf{ad} + \mathsf{bc} - \mathsf{bd})\zeta_3$$

and also the other properties hold for a ring, and one can prove (exercise) that this is a field too.

We've discussed irreducibility, now let's discuss the nature of factorization in F[x].

We've already seen that in F[x] one has a division algorithm whose statement (and as we'll see, implications) parallels the same statement in \mathbb{Z} .

Indeed in \mathbb{Z} we have theorems about how integers factor into products of prime numbers which are 'indivisible' and we shall develop a similar sort of arithmetic in the ring F[x].

In the natural numbers, one of the principle properties of prime numbers is not just that they have no factors except 1 and themselves, but that if $p \mid rs$ then $p \mid r$ and/or $p \mid s$.

In F[x] the irreducible polynomials play a similar role.

Theorem Let $p(x) \in F[x]$ be irreducible. If p(x) divides r(x)s(x) for $r(x), s(x) \in F[x]$ then either p(x) divides r(x) and/or p(x) divides s(x).

Proof.	
Later	

Corollary

If $p(x) \in F[x]$ is irreducible and divides a product $r_1(x)r_2(x)\cdots r_n(x)$ for $r_i(x) \in F[x]$ then p(x) divides at least one $r_i(x)$.

Proof.

The statement is (trivially) true if n = 1. And for an arbitrary $r_1(x)r_2(x)\cdots r_n(x)$ if p(x) divides

$$r_1(x)r_2(x)\cdots r_n(x)=r_1(x)(r_2(x)\cdots r_n(x))$$

then by the theorem it either divides $r_1(x)$ or it divides $r_2(x) \cdots r_n(x)$ and if it divides $r_2(x) \cdots r_n(x)$ then it's dividing a product of n-1 polynomials so we may inductively assume the result is true, i.e. that p(x) divides one of the $r_2(x), \ldots, r_n(x)$.

Theorem

If F is a field then every non-constant polynomial $f(x) \in F[x]$ can be factored in F[x] into a product of irreducibles where the irreducibles are unique except for order and for unit, (i.e. non-zero constant) factors in F. That is if $f(x) = p_1p_2 \cdots p_r = q_1q_2 \dots q_s$ for p_i and q_j irreducibles, then r = s (the same number of irreducibles) and we may assume that $q_i = u_ip_i$ for u_i units of F (i.e. a non-zero number).

We won't give the proof here as this result is a special case of a more general statement about divisibility in integral domains. We will prove this more general result later.

For a perspective on this, you can look at the same situation for \mathbb{Z} .

For example $6 = 2 \cdot 3$ but also $6 = (-2)(-3) = (-1)2 \cdot (-1)3$ and similarly $48 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3$ but also $48 = (-2) \cdot 2 \cdot (-2) \cdot (-2) \cdot (-3)$.

By the way since $U(\mathbb{Z})$ the only 'unit multiples' of an irreducible are ' \pm (irreducible)' and in fact, in \mathbb{Z} the only irreducibles are $\pm p$ for p a prime.