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Eisenstein’s Criterion

Another important irreducibility test is this one due to Eisenstein in 1850.

Let f(x) = anx" + a,_1x" 1 + -+ + a;x + ap € Z[x] and if there is a
prime p such that p{a, but p| an_1,...,p | ap and p?{ ag then f(x) is
irreducible over Q.
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Proof.

Recall that f(x) irreducible over Q implies f(x) is irreducible over Z. So
say f(x) = g(x)h(x) for g(x), h(x) € Z[x] where 1 < deg(g(x)) < n and
1 < deg(h(x)) < n.

g(x)=bx"+---+ by
h(x) =cx*+ -+

Since p | ag but p? { ag then p|bycy which means p | by or p | ¢y but not
both.

Sosay p | bp and pt . Since p{a, = b,cs then pt b, so there is a least
integer t such that p 1 by.

We have a; = byco + - - - + bocy and by assumption p | a; and by choice of
t, p| bt—1,...,bo ergo p | brcy but this is impossible since p 1 by and
p1co. Ol

o
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With this theorem, we can manufacture examples of irreducible
polynomials (of any degree) at will.

For example: x® — 9x* 4 3x2 — 12 satisfies the conditions with p = 3 since
ptl,p|—9 p|3 p|12 but p?{12.

What's also useful about Eisenstein’s criterion is that it is easy to make
the examples have as large a degree as desired, since the irreducibility is
deduced in terms of the coefficients.

High degree examples aren’t as easy to construct/verify with the Mod p
irreducibility test we discussed earlier.
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An important class of examples where the Eisenstein criteria is used are
the cyclotomic polynomials

xP —1
i

which are ubiquitous throughout number theory etc.

The term 'cyclotomic’ relates to the act of splitting a circle into (in this
case p equal sized arcs), each of which corresponds to a sector of the
circle of angle 2?“.

Timothy Kohl (Boston University) MAB42 Lecture February 10, 2025

5/18



The reason for this connection is due to the roots of the polynomial xP —1

A root of xP — 1 is a number whose pt" power is 1, and one may show that

the p (distinct!) roots are Cp where (, = e’ is primitive pt" root of unity.

There is nice visual for this we can give which shows where the term
cyclotomic.

(N.B. The polynomial xP — 1 is actually not irreducible since x =1 is a
root, and therefore xP — 1 is divisible by x — 1, but if we factor out this
root, then the result is ®,(x) which is irreducible as well shall
demonstrate.)
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Recall from calculus 2 that et = cos(t) + isin(t) and so

2 £ 27 21
e'r = cos( T 4 lsm(2”) and so (e'?)k =% = cos(k%‘) + isin(k%‘).

27

As such (¢))P = (eikT)p = e/k2™ = cos(k2r) + isin(k27) = 1 for each k
from 0 to p — 1.

And one can check that each CP is distinct as k varies from 0 to p — 1.
Note also, ¢5 = (p = 1.
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These points all lie on the unit circle x?> + y? = 1 and equidistributed at
angles k%’.

So for p =5 we have 5 roots of unity distributed around the circle at
multiples of 27 /5 (72 degrees).

y
¢
5 o
0 ¢ X
Gs

and we see that these arcs subdivide the circle evenly.

Again, note (2 = (0 = 1 of course.
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In order to prove the irreducibility of ®,(x) we actually need a small but
important observation about Binomial coefficients.

If pis a prime then (}) = W—!k)! and for k =0 and k = p we have
(8) =1and (g) =1.

For 0 < k < p we observe that, since p is prime, p does not divide k!, nor
does it divide (p — k)!, but that obviously p divides p!.

As such p divides (F) for any 0 < k < p.
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We also need to recall the basic binomial theorem, namely:

(x +y)" = zn: (:)Xkyn—k

k=0

where, in a moment, our 'n’ will be a prime p.
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We still wish to show the following.

Proposition

For each prime p, ®, is irreducible.

Proof.
Let

f(x) =®p(x+1)
_ (x+1)p -1
 (x+1)-1

—_ p—1 p p—2 p p—3 P
X +<1>X —|—<2>x = +<p—1>

and so every coefficient of f(x) (except that of xP~1) is divisible by p, but
p>{ (pfl) and therefore by Eisenstein's criterion, f(x) is irreducible.

But f(x) irreducible certainly implies that ®,(x) is irreducible since if
d,(x) = g(x)h(x) then f(x) = g(x + 1)h(x +1). O
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For p = 3 for example, we get that (3 is one of the roots of
P3(x) = x2 + x + 1.

By the quadratic formula the two (complex) roots are

~1+.-3
2
-14++v-3
2

and one can show that (3 = since sin(%) > 0.

And as with 7 giving rise to Q(/) one can also contemplate the field
obtained by 'adjoining’ (3 to Q.
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In Q((3) = {a+ b(3 | a,b € Q} one adds elements by the rule
(a+b(3)+ (c+d(3) = (a+c)+ (b+ d)(3 but the multiplication requires
a bit of analysis:

(a+ bG)(c + d(3) = (ac + bd(3) + (ad + bc)(s

so it's not clear that this operation is closed.

But we can observe that (3 is a root of x> + x + 1 which means
(2 +(3+1=0sothat (? = —(3 — 1 which means

(ac 4 bd(2) + (ad + bc)(z = (ad — bd) + (ad + bc — bd)(3

and also the other properties hold for a ring, and one can prove (exercise)
that this is a field too.
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Uniqueness of Factorization in F[x]

We've discussed irreducibility, now let’s discuss the nature of factorization
in F[x].

We've already seen that in F[x] one has a division algorithm whose

statement (and as we'll see, implications) parallels the same statement in
Z.

Indeed in Z we have theorems about how integers factor into products of
prime numbers which are 'indivisible’ and we shall develop a similar sort of
arithmetic in the ring F[x].
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In the natural numbers, one of the principle properties of prime numbers is
not just that they have no factors except 1 and themselves, but that if

p|rsthen p|rand/or p]|s.

In F[x] the irreducible polynomials play a similar role.

Let p(x) € F[x] be irreducible. If p(x) divides r(x)s(x) for
r(x), s(x) € F[x] then either p(x) divides r(x) and/or p(x) divides s(x).
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Corollary

If p(x) € F[x] is irreducible and divides a product ri(x)ra(x)- - ra(x) for
ri(x) € F[x] then p(x) divides at least one ri(x).

| \

Proof.
The statement is (trivially) true if n = 1. And for an arbitrary
ri(x)ra(x) - - - ra(x) if p(x) divides

r(x)r2(x) - ra(x) = r(x) (r2(x) - - ra(x))

then by the theorem it either divides ri(x) or it divides ra(x) - - - ry(x) and
if it divides rp(x) - - - rp(x) then it's dividing a product of n — 1 polynomials
so we may inductively assume the result is true,i.e. that p(x) divides one
of the ra(x),. .., ra(x). O

4
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Theorem

If F is a field then every non-constant polynomial f(x) € F[x] can be
factored in F[x] into a product of irreducibles where the irreducibles are
unique except for order and for unit, (i.e. non-zero constant) factors in F.
That is if f(x) = p1p2---pr = q1G2 ... qs for p; and q; irreducibles, then
r = s (the same number of irreducibles) and we may assume that

qi = uip; for uj units of F (i.e. a non-zero number).

We won't give the proof here as this result is a special case of a more
general statement about divisibility in integral domains. We will prove this
more general result later.
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For a perspective on this, you can look at the same situation for Z.

For example 6 = 2 - 3 but also 6 = (—2)(—3) = (—1)2-(—1)3 and
similarly 48 =2-2-2-2-3 but also 48 = (—2) -2 (—2) - (—2) - (—3).

By the way since U(Z) the only 'unit multiples’ of an irreducible are
'+(irreducible)’ and in fact, in Z the only irreducibles are +p for p a prime.
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