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Operational Facts About Quotients

If one is trying to work out the structure of a quotient ring R//, there are
a number of (seemingly) low level facts one can use.

o x+/=y+/limpliesx+z+Il=y+z+1
o x+1=04+1iffxel
@ (x+1)"=x"+1foralln>1

And we use these, for example, to take a 'complicated’ coset and 'replace’
it with a simpler coset.

We saw this in the example the other day with Z[x]/(x) where we realized
that f(x) + (x) = (0) + (x).
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Here is an example where we use these techniques to analyze a quotient
ring.

Let R="Z[i] and | = (2 — ).

First, observe that 2 — i + / = 0 + I which implies that

2—i4i+l=0+i+]/
!
24 1=i+1

This implies, in particular that a+ bi + / (a "typical’ coset) can be
"rewritten’ as
at+bi+l=a+2b+1

where, in particular, a + 2b is simply an integer.
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Moreover, we can deduce other conclusions

24 1=i+1
l
44 1=—-1+1since2?=4and i’=-1
l
b41+1=-1+1+1

1l
5+/=0+1

i.e. 5=0(mod ).

So we have that (a+ bi)+ 1 = (a+2b) + | where 5+ 1 =0+ 1, so for
example 1 +2/4+/ =0+
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Claim: The cosets {0+ 1,1+ 1,2+ 1,3+ 1,4+ I} are all distinct in Z[i]//
and every coset (a+ bi) + / is equal to one of these.

PROOF: First, if for integers a,b we have a+/ =b+ [ thena— b el so
(a—b) = (x+ iy)(2— 1)

Soa—b=(2x+y)+ (2y — x)i which means 2x +y = a— b and

2y —x=0sox=2yandso2x+y =5y =a—bmeaning5|a—b
which means a = b(mod 5).

But for a, b € {0,1,2,3,4} this is impossible unless a = b.

And since (a+ bi) +1 = (a+2b)+/and 5+ =0+ 1/ then (a+ bi)+/
equals r + [ for exactly one r € {0,1,2,3,4}. O
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So we've just shown is that Z[i]/(2 — i) = Zs.

This is interesting and important in that this quotient ring is a field, even
though the ring that it's a quotient of, Z[i], is not a field, but only a
domain.

What this comes from is the relationship between the ideal and the ring.

More on this later.
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Homomorphisms and ldeals

Before exploring more specific examples of quotient ring structures, we
consider a basic source of ideals (and in a sense where all ideals arise

from) namely ring homomorphisms.

Recall that for rings R, S, a function ¢ : R — S is a ring homomorphism if

o(n + r2) = () + ¢(r2)
P(rir2) = ¢(r1)é(r2)
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Let's go over some basic properties of homomorphisms.

Proposition
If  : R — S is a ring homomorphism then

(a) $(0r) = 0s

(b) o(=r) = —¢(r)

(c) if R" C R is a subring then ¢(R') is a subring of S

(d) if S is a subring of S then ¢=1(S') = {r € R | ¢(r) € S'} is a sub-ring
of R

(e) if R has unity 1g then ¢(1R) is a unity for ¢(R) (but not necessarily
for S).

(f) if | is an ideal of R then ¢(1) is an ideal of $(R)

(g) if J is an ideal of S then ¢~1(J) is an ideal of R.

PROOF: We shall discuss the proofs of some of these statements.
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PROOF (a): For any r € R, r 4+ 0g = r of course, so ¢(r + 0r) = ¢(r)
where now ¢(r + 0r) = ¢(r) + ¢(0r), which means ¢(r) = ¢(r) + ¢(0r)
so if we subtract ¢(r) from both sides we get 0s = ¢(0g).

PROOF (c) If R" C R is a subring then ¢(R’) consists of elements of the
form ¢(r) for r € R of course, so we need to apply the subring test to
#(R'). First, we have ¢(r1) — ¢(r2) = ¢(r — ) € ¢(R') sincen —rn € R’
and gb(r1)¢(r2) = ¢(F1I’2) S qb(Rl) since nn € R if n,rnc R’
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PROOF (e) If 1 is the unity element of R then if ¢(r) € ¢(R) then
d(1r)d(r) = &(1rr) = &(r) and since all elements of ¢(R) are (by
definition) of the form ¢(r) for r € R then ¢(1g) acts like a unity element
for ¢(R).

Is (1g) = 1s for the multiplicative identity 15 € S7?
. . x 0
Actually no, here is an example, define ¢ : R — Ma(R) by x [0 ]

where 1 — [(1) 8} which is not the 2x2 identity matrix.
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Part (g) above, implies that ¢~1(0s) is an ideal of R.

Definition

For a ring homomorphism ¢ : R — S, the kernel is

Ker(¢) ={re R | ¢(r) = 0s}.

The importance of the kernel of a homomorphism is that it quantifies to
what degree a homomorphism fails to be one-to-one.

Recall that ¢ : R — S is one-to-one if ¢(r1) = ¢(r2) only if n = r.

This implies that ¢(r1) — ¢(r2) = 0 only if 1 —r» =0, where we observe

that ¢(r1) — ¢(r2) = ¢(r — r2).
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Proposition
If  : R — S is a homomorphism then ¢ is one-to-one if and only if

Ker(¢) = {Or}.

Proof.

If ¢ is one-to-one then let x € Ker(¢) then ¢(x) = 0s, but we already
know that ¢(0g) = Os so by the one-to-one property, it must be that

X = OR.

If Ker(¢) = {0} then suppose ¢(r1) = ¢(r2) then ¢p(rn — r2) = ¢(0g) = 0Os
which means r; — r, € Ker(¢) = {0}, but this means

rn—r € Ker(¢) = {Or} so n =, i.e. ¢ is one-to-one. O

4
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As observed above, for ¢ : R — S a ring homomorphism, Ker(¢) is the
inverse image of the zero ideal in S, and is therefore an ideal of R.

So we ask a reasonably natural question, what can we say about
R/Ker(¢)?

Theorem (First Isomophism Theorem for Rings)

If : R — S is a ring homomorphism then R/Ker(¢) = ¢(R) where
®(R) C S is the image of R. O
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PROOF:
Given ¢ : R — S, let's define & : R/Ker(¢) — ¢(R) by
O(x + Ker(¢)) = ¢(x).

Observe first, that if x + Ker(¢) = y + Ker(¢) then
®(x + Ker(¢)) = ¢(x) and ®(y + Ker(¢)) = ¢(y) so we must check that
these are equal in order to show that ¢ is well defined.

However, this is easy since ¢(x) = ¢(y) iff ¢(x — y) = 0s which is
equivalent to x — y € Ker(¢), but this is exactly equivalent to
x + Ker(¢) =y + Ker(¢).

® is a homomorphism since

&((rn + Ker(9)) + (r2 + Ker(9))) = (. + 1 + Ker(¢)) = é(r1 + 1)
which is the same as ®(r; + Ker(¢)) + ®(r2 + Ker(¢)), and the
multiplicative property is proved similarly.
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PROOF (continued)

We note that @ is clearly onto since if ¢(r) € ¢(R) then

o(r) = &(r + Ker(¢)). To prove that ® is one-to-one, let's consider
Ker(®).

Note that x + Ker(¢) € Ker(®) if ®(x + Ker(¢)) = ¢(x) = 0 which is
true iff x € Ker(¢) and so Ker(®) = {0 + Ker(¢)}!

i.e. Ker(®) is trivial, so ® is one-to-one, and therefore an isomorphism.
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As to ¢(R) vs. S, we have the following.

If  : R — S is onto, namely $(R) = S then R/Ker(¢) = S.

Also we note this too.

If  : R — S is one-to-one then R = ¢(R).

To show this, we note that Ker(¢) = {0} and so R/Ker(¢) = R/{0} and
one can show that R = R/{0} via the function x — x + {0}.
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