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Operational Facts About Quotients

If one is trying to work out the structure of a quotient ring R/I , there are
a number of (seemingly) low level facts one can use.

x + I = y + I implies x + z + I = y + z + I

x + I = 0 + I iff x ∈ I

(x + I )n = xn + I for all n ≥ 1

And we use these, for example, to take a ’complicated’ coset and ’replace’
it with a simpler coset.

We saw this in the example the other day with Z[x ]/〈x〉 where we realized
that f (x) + 〈x〉 = f (0) + 〈x〉.
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Here is an example where we use these techniques to analyze a quotient
ring.

Let R = Z[i ] and I = 〈2− i〉.

First, observe that 2− i + I = 0 + I which implies that

2− i + i + I = 0 + i + I

↓

2 + I = i + I

This implies, in particular that a + bi + I (a ’typical’ coset) can be
’rewritten’ as

a+ bi + I = a+ 2b + I

where, in particular, a + 2b is simply an integer.
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Moreover, we can deduce other conclusions

2 + I = i + I

↓

4 + I = −1 + I since 22 = 4 and i2 = −1

↓

4 + 1 + I = −1 + 1 + I

↓

5 + I = 0 + I

i.e. 5 ≡ 0(mod I ).

So we have that (a + bi) + I = (a + 2b) + I where 5 + I = 0 + I , so for
example 1 + 2i + I = 0 + I
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Claim: The cosets {0 + I , 1 + I , 2 + I , 3 + I , 4 + I} are all distinct in Z[i ]/I
and every coset (a + bi) + I is equal to one of these.

PROOF: First, if for integers a, b we have a + I = b + I then a − b ∈ I so
(a − b) = (x + iy)(2− i).

So a − b = (2x + y) + (2y − x)i which means 2x + y = a − b and
2y − x = 0 so x = 2y and so 2x + y = 5y = a − b meaning 5 | a− b
which means a ≡ b(mod 5).

But for a, b ∈ {0, 1, 2, 3, 4} this is impossible unless a = b.

And since (a + bi) + I = (a + 2b) + I and 5 + I = 0 + I then (a + bi) + I
equals r + I for exactly one r ∈ {0, 1, 2, 3, 4}.
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So we’ve just shown is that Z[i ]/〈2− i〉 ∼= Z5.

This is interesting and important in that this quotient ring is a field, even
though the ring that it’s a quotient of, Z[i ], is not a field, but only a
domain.

What this comes from is the relationship between the ideal and the ring.

More on this later.
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Homomorphisms and Ideals

Before exploring more specific examples of quotient ring structures, we
consider a basic source of ideals (and in a sense where all ideals arise
from) namely ring homomorphisms.

Recall that for rings R , S , a function φ : R → S is a ring homomorphism if

φ(r1 + r2) = φ(r1) + φ(r2)

φ(r1r2) = φ(r1)φ(r2)
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Let’s go over some basic properties of homomorphisms.

Proposition

If φ : R → S is a ring homomorphism then
(a) φ(0R) = 0S
(b) φ(−r) = −φ(r)
(c) if R ′ ⊆ R is a subring then φ(R ′) is a subring of S
(d) if S ′ is a subring of S then φ−1(S ′) = {r ∈ R | φ(r) ∈ S ′} is a sub-ring
of R
(e) if R has unity 1R then φ(1R) is a unity for φ(R) (but not necessarily
for S).
(f) if I is an ideal of R then φ(I ) is an ideal of φ(R)
(g) if J is an ideal of S then φ−1(J) is an ideal of R.

PROOF: We shall discuss the proofs of some of these statements.
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PROOF (a): For any r ∈ R , r + 0R = r of course, so φ(r + 0R) = φ(r)
where now φ(r + 0R) = φ(r) + φ(0R), which means φ(r) = φ(r) + φ(0R)
so if we subtract φ(r) from both sides we get 0S = φ(0R).

PROOF (c) If R ′ ⊆ R is a subring then φ(R ′) consists of elements of the
form φ(r) for r ∈ R of course, so we need to apply the subring test to
φ(R ′). First, we have φ(r1)− φ(r2) = φ(r1 − r2) ∈ φ(R ′) since r1 − r2 ∈ R ′

and φ(r1)φ(r2) = φ(r1r2) ∈ φ(R ′) since r1r2 ∈ R ′ if r1, r2 ∈ R ′.
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PROOF (e) If 1R is the unity element of R then if φ(r) ∈ φ(R) then
φ(1R)φ(r) = φ(1R r) = φ(r) and since all elements of φ(R) are (by
definition) of the form φ(r) for r ∈ R then φ(1R) acts like a unity element
for φ(R).

Is φ(1R) = 1S for the multiplicative identity 1S ∈ S?

Actually no, here is an example, define φ : R → M2(R) by x 7→

[

x 0
0 0

]

,

where 1 7→

[

1 0
0 0

]

which is not the 2x2 identity matrix.
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Part (g) above, implies that φ−1(0S ) is an ideal of R .

Definition

For a ring homomorphism φ : R → S , the kernel is
Ker(φ) = {r ∈ R | φ(r) = 0S}.

The importance of the kernel of a homomorphism is that it quantifies to
what degree a homomorphism fails to be one-to-one.

Recall that φ : R → S is one-to-one if φ(r1) = φ(r2) only if r1 = r2.

This implies that φ(r1)− φ(r2) = 0 only if r1 − r2 = 0, where we observe
that φ(r1)− φ(r2) = φ(r1 − r2).
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Proposition

If φ : R → S is a homomorphism then φ is one-to-one if and only if
Ker(φ) = {0R}.

Proof.

If φ is one-to-one then let x ∈ Ker(φ) then φ(x) = 0S , but we already
know that φ(0R) = 0S so by the one-to-one property, it must be that
x = 0R .
If Ker(φ) = {0} then suppose φ(r1) = φ(r2) then φ(r1 − r2) = φ(0R) = 0S
which means r1 − r2 ∈ Ker(φ) = {0}, but this means
r1 − r2 ∈ Ker(φ) = {0R} so r1 = r2, i.e. φ is one-to-one.
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As observed above, for φ : R → S a ring homomorphism, Ker(φ) is the
inverse image of the zero ideal in S , and is therefore an ideal of R .

So we ask a reasonably natural question, what can we say about
R/Ker(φ)?

Theorem (First Isomophism Theorem for Rings)

If φ : R → S is a ring homomorphism then R/Ker(φ) ∼= φ(R) where
φ(R) ⊆ S is the image of R.
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PROOF:
Given φ : R → S , let’s define Φ : R/Ker(φ) → φ(R) by
Φ(x + Ker(φ)) = φ(x).

Observe first, that if x + Ker(φ) = y + Ker(φ) then
Φ(x + Ker(φ)) = φ(x) and Φ(y + Ker(φ)) = φ(y) so we must check that
these are equal in order to show that Φ is well defined.

However, this is easy since φ(x) = φ(y) iff φ(x − y) = 0S which is
equivalent to x − y ∈ Ker(φ), but this is exactly equivalent to
x + Ker(φ) = y + Ker(φ).

Φ is a homomorphism since
Φ((r1 + Ker(φ)) + (r2 + Ker(φ))) = Φ(r1 + r2 + Ker(φ)) = φ(r1 + r2)
which is the same as Φ(r1 + Ker(φ)) + Φ(r2 + Ker(φ)), and the
multiplicative property is proved similarly.
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PROOF (continued)
We note that Φ is clearly onto since if φ(r) ∈ φ(R) then
φ(r) = Φ(r + Ker(φ)). To prove that Φ is one-to-one, let’s consider
Ker(Φ).

Note that x + Ker(φ) ∈ Ker(Φ) if Φ(x + Ker(φ)) = φ(x) = 0 which is
true iff x ∈ Ker(φ) and so Ker(Φ) = {0 + Ker(φ)}!

i.e. Ker(Φ) is trivial, so Φ is one-to-one, and therefore an isomorphism.
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As to φ(R) vs. S , we have the following.

Corollary

If φ : R → S is onto, namely φ(R) = S then R/Ker(φ) ∼= S.

Also we note this too.

Corollary

If φ : R → S is one-to-one then R ∼= φ(R).

To show this, we note that Ker(φ) = {0} and so R/Ker(φ) = R/{0} and
one can show that R ∼= R/{0} via the function x 7→ x + {0}.
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