MA542 Lecture

Timothy Kohl

Boston University

February 18, 2025

If one is trying to work out the structure of a quotient ring R/I, there are a number of (seemingly) low level facts one can use.

•
$$x + I = y + I$$
 implies $x + z + I = y + z + I$

•
$$x + I = 0 + I$$
 iff $x \in I$

•
$$(x+I)^n = x^n + I$$
 for all $n \ge 1$

And we use these, for example, to take a 'complicated' coset and 'replace' it with a simpler coset.

We saw this in the example the other day with $\mathbb{Z}[x]/\langle x \rangle$ where we realized that $f(x) + \langle x \rangle = f(0) + \langle x \rangle$.

Here is an example where we use these techniques to analyze a quotient ring.

Let
$$R = \mathbb{Z}[i]$$
 and $I = \langle 2 - i \rangle$.

First, observe that 2 - i + I = 0 + I which implies that

$$2 - i + i + I = 0 + i + I$$

$$\downarrow$$

$$2 + I = i + I$$

This implies, in particular that a + bi + I (a 'typical' coset) can be 'rewritten' as

$$a+bi+I=a+2b+I$$

where, in particular, a + 2b is simply an integer.

Moreover, we can deduce other conclusions

$$2 + I = i + I$$

$$\downarrow$$

$$4 + I = -1 + I \text{ since } 2^2 = 4 \text{ and } i^2 = -1$$

$$\downarrow$$

$$4 + 1 + I = -1 + 1 + I$$

$$\downarrow$$

$$5 + I = 0 + I$$

i.e. $5 \equiv 0 \pmod{I}$.

So we have that (a + bi) + I = (a + 2b) + I where 5 + I = 0 + I, so for example 1 + 2i + I = 0 + I

<u>Claim</u>: The cosets $\{0 + I, 1 + I, 2 + I, 3 + I, 4 + I\}$ are all distinct in $\mathbb{Z}[i]/I$ and every coset (a + bi) + I is equal to one of these.

PROOF: First, if for integers a, b we have a + I = b + I then $a - b \in I$ so (a - b) = (x + iy)(2 - i).

So a - b = (2x + y) + (2y - x)i which means 2x + y = a - b and 2y - x = 0 so x = 2y and so 2x + y = 5y = a - b meaning 5 | a - b which means $a \equiv b \pmod{5}$.

But for $a, b \in \{0, 1, 2, 3, 4\}$ this is impossible unless a = b.

And since (a + bi) + I = (a + 2b) + I and 5 + I = 0 + I then (a + bi) + I equals r + I for exactly one $r \in \{0, 1, 2, 3, 4\}$.

So we've just shown is that $\mathbb{Z}[i]/\langle 2-i\rangle \cong \mathbb{Z}_5$.

This is interesting and important in that this quotient ring is a field, even though the ring that it's a quotient of, $\mathbb{Z}[i]$, is not a field, but only a domain.

What this comes from is the relationship between the ideal and the ring.

More on this later.

Before exploring more specific examples of quotient ring structures, we consider a basic source of ideals (and in a sense where *all* ideals arise from) namely ring homomorphisms.

Recall that for rings R, S, a function $\phi: R \rightarrow S$ is a *ring homomorphism* if

$$\phi(r_1 + r_2) = \phi(r_1) + \phi(r_2)$$

$$\phi(r_1 r_2) = \phi(r_1)\phi(r_2)$$

Let's go over some basic properties of homomorphisms.

Proposition

If $\phi : R \to S$ is a ring homomorphism then (a) $\phi(0_R) = 0_S$ (b) $\phi(-r) = -\phi(r)$ (c) if $R' \subseteq R$ is a subring then $\phi(R')$ is a subring of S (d) if S' is a subring of S then $\phi^{-1}(S') = \{r \in R \mid \phi(r) \in S'\}$ is a sub-ring of R (e) if R has unity 1_R then $\phi(1_R)$ is a unity for $\phi(R)$ (but not necessarily for S). (f) if I is an ideal of R then $\phi(I)$ is an ideal of $\phi(R)$ (g) if J is an ideal of S then $\phi^{-1}(J)$ is an ideal of R.

PROOF: We shall discuss the proofs of some of these statements.

PROOF (a): For any $r \in R$, $r + 0_R = r$ of course, so $\phi(r + 0_R) = \phi(r)$ where now $\phi(r + 0_R) = \phi(r) + \phi(0_R)$, which means $\phi(r) = \phi(r) + \phi(0_R)$ so if we subtract $\phi(r)$ from both sides we get $0_S = \phi(0_R)$.

PROOF (c) If $R' \subseteq R$ is a subring then $\phi(R')$ consists of elements of the form $\phi(r)$ for $r \in R$ of course, so we need to apply the subring test to $\phi(R')$. First, we have $\phi(r_1) - \phi(r_2) = \phi(r_1 - r_2) \in \phi(R')$ since $r_1 - r_2 \in R'$ and $\phi(r_1)\phi(r_2) = \phi(r_1r_2) \in \phi(R')$ since $r_1r_2 \in R'$ if $r_1, r_2 \in R'$.

PROOF (e) If 1_R is the unity element of R then if $\phi(r) \in \phi(R)$ then $\phi(1_R)\phi(r) = \phi(1_R r) = \phi(r)$ and since all elements of $\phi(R)$ are (by definition) of the form $\phi(r)$ for $r \in R$ then $\phi(1_R)$ acts like a unity element for $\phi(R)$.

Is $\phi(1_R) = 1_S$ for the multiplicative identity $1_S \in S$?

Actually no, here is an example, define $\phi : \mathbb{R} \to M_2(\mathbb{R})$ by $x \mapsto \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}$, where $1 \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ which is not the 2x2 identity matrix.

Part (g) above, implies that $\phi^{-1}(0_S)$ is an ideal of *R*.

Definition

For a ring homomorphism $\phi : R \to S$, the <u>kernel</u> is $Ker(\phi) = \{r \in R \mid \phi(r) = 0_S\}.$

The importance of the kernel of a homomorphism is that it quantifies to what degree a homomorphism fails to be one-to-one.

Recall that $\phi : R \to S$ is one-to-one if $\phi(r_1) = \phi(r_2)$ only if $r_1 = r_2$.

This implies that $\phi(r_1) - \phi(r_2) = 0$ only if $r_1 - r_2 = 0$, where we observe that $\phi(r_1) - \phi(r_2) = \phi(r_1 - r_2)$.

Proposition

If $\phi : R \to S$ is a homomorphism then ϕ is one-to-one if and only if $Ker(\phi) = \{0_R\}.$

Proof.

If ϕ is one-to-one then let $x \in Ker(\phi)$ then $\phi(x) = 0_S$, but we already know that $\phi(0_R) = 0_S$ so by the one-to-one property, it must be that $x = 0_R$. If $Ker(\phi) = \{0\}$ then suppose $\phi(r_1) = \phi(r_2)$ then $\phi(r_1 - r_2) = \phi(0_R) = 0_S$ which means $r_1 - r_2 \in Ker(\phi) = \{0\}$, but this means $r_1 - r_2 \in Ker(\phi) = \{0_R\}$ so $r_1 = r_2$, i.e. ϕ is one-to-one. As observed above, for $\phi : R \to S$ a ring homomorphism, $Ker(\phi)$ is the inverse image of the zero ideal in S, and is therefore an ideal of R.

So we ask a reasonably natural question, what can we say about $R/Ker(\phi)$?

Theorem (First Isomophism Theorem for Rings)

If $\phi : R \to S$ is a ring homomorphism then $R/Ker(\phi) \cong \phi(R)$ where $\phi(R) \subseteq S$ is the image of R.

PROOF:

Given $\phi : R \to S$, let's define $\Phi : R/Ker(\phi) \to \phi(R)$ by $\Phi(x + Ker(\phi)) = \phi(x)$.

Observe first, that if $x + Ker(\phi) = y + Ker(\phi)$ then $\Phi(x + Ker(\phi)) = \phi(x)$ and $\Phi(y + Ker(\phi)) = \phi(y)$ so we must check that these are equal in order to show that Φ is well defined.

However, this is easy since $\phi(x) = \phi(y)$ iff $\phi(x - y) = 0_S$ which is equivalent to $x - y \in Ker(\phi)$, but this is exactly equivalent to $x + Ker(\phi) = y + Ker(\phi)$.

 Φ is a homomorphism since $\Phi((r_1 + Ker(\phi)) + (r_2 + Ker(\phi))) = \Phi(r_1 + r_2 + Ker(\phi)) = \phi(r_1 + r_2)$ which is the same as $\Phi(r_1 + Ker(\phi)) + \Phi(r_2 + Ker(\phi))$, and the multiplicative property is proved similarly. PROOF (continued) We note that Φ is clearly onto since if $\phi(r) \in \phi(R)$ then $\phi(r) = \Phi(r + Ker(\phi))$. To prove that Φ is one-to-one, let's consider $Ker(\Phi)$.

Note that $x + Ker(\phi) \in Ker(\Phi)$ if $\Phi(x + Ker(\phi)) = \phi(x) = 0$ which is true iff $x \in Ker(\phi)$ and so $Ker(\Phi) = \{0 + Ker(\phi)\}!$

i.e. $Ker(\Phi)$ is trivial, so Φ is one-to-one, and therefore an isomorphism.

As to $\phi(R)$ vs. S, we have the following.

Corollary

If $\phi : R \to S$ is onto, namely $\phi(R) = S$ then $R/Ker(\phi) \cong S$.

Also we note this too.

Corollary

If $\phi : R \to S$ is one-to-one then $R \cong \phi(R)$.

To show this, we note that $Ker(\phi) = \{0\}$ and so $R/Ker(\phi) = R/\{0\}$ and one can show that $R \cong R/\{0\}$ via the function $x \mapsto x + \{0\}$.