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Definition

Recall from last time the definitions of prime and maximal ideals.

A prime ideal I of a commutative ring R is a proper ideal such that

ab ∈ I implies that either a ∈ I or b ∈ I

A maximal ideal I of a commutative ring R is a proper ideal such that if
there is another ideal J such that I ⊆ J ⊆ R then either I = J or J = R .

So how do we determine if a given ideal is prime or maximal?
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Last time, we discussed prime ideals in Z as being exactly those of the
form pZ for p a prime integer. And we will discuss more implications of
being a prime ideal later on.

As far as maximality is concerned, a standard argument that is used to
prove a given ideal I ⊆ R is maximal is to show that any ideal J, that
properly contains I must be all of R , i.e.

I ( J ⊂ R → J = R

And the simplest strategy to show that J = R comes from the following
small but important fact.
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Lemma

Let R be a commutative ring with unity, and J ⊆ R an ideal. If J contains
a unit of R then J = R.

Proof.

If u ∈ J is unit with inverse u−1 ∈ R then by the ideal property u−1u ∈ J,
but u−1u = 1 so 1 ∈ J. But now, if r ∈ R then r · 1 = r ∈ J (again by the
ideal property!) but this implies R ⊆ J and so J = R .

So the application of this is to take the ideal containment I ( J ⊆ R
where I is the ideal we wish to prove is maximal and show that 1 ∈ J.
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Proposition

The ideal I = 〈x2 − 2〉 ⊆ Q[x ] is maximal.

PROOF: Let J be an ideal properly containing I , ie. 〈x2 − 2〉 ( J ⊆ Q[x ].

So this means there exists f (x) ∈ J such that f (x) 6∈ 〈x2 − 2〉, which
means that f (x) is not a multiple of x2 − 2.

So by the division algorithm there exists q(x) and r(x) such that

f (x) = q(x)(x2 − 2) + r(x)

where deg(r(x)) < deg(x2 − 2) = 2 or r(x) = 0, but we already know
r(x) 6= 0.
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PROOF (continued)

So we have f (x) = q(x)(x2 − 2) + r(x) where r(x) = ax + b for some
a, b ∈ Q where (a, b) 6= (0, 0).

Moreover, since f (x) ∈ J and x2 − 2 ∈ I ⊆ J then q(x)(x2 − 2) ∈ J and
so ax + b = r(x) = f (x)− q(x)(x2 − 2) ∈ J.

But now, (ax − b)(ax + b) = a2x2 − b2 ∈ J, and also
a2(x2 − 2) = a2x2 − 2a2 ∈ J too.

Putting these two facts together implies
(a2x2 − 2a2)− (a2x2 − b2) = b2 − 2a2 ∈ J.

But b2 − 2a2 ∈ Q and b2 − 2a2 6= 0 since otherwise
(

b

a

)2
= 2 which is

impossible because...
√
2 6∈ Q.
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PROOF (continued)

So.... we have that b2 − 2a2 is a non-zero constant polynomial in J, but
this is a unit of Q[x ] which means (by the lemma) that J = Q[x ].

Therefore I = 〈x2 − 2〉 is a maximal ideal of Q[x ].

Note, we can replace x2 − 2 by something similar like x2 − 3 (since√
−3 6∈ Q) or x2 + 1 (since i 6∈ Q) and the conclusion (and argument) are

virtually the same.
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There is another characterization of prime and maximal ideals in terms of
the quotient rings they form.

Theorem

Let R be a commutative ring with unity and let I be an ideal of R.
1) R/I is an integral domain iff I is a prime ideal.
2) R/I is a field iff I is a maximal ideal.

PROOF of (1): Suppose R/I is a domain then (x + I )(y + I ) = 0 + I iff
x + I = 0 + I or y + I = 0 + I .

But, since (x + I )(y + I ) = xy + I then this is equivalent to saying xy ∈ I
iff x ∈ I or y ∈ I .

That is R/I is a domain iff xy ∈ I implies x ∈ I or y ∈ I .
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PROOF of (2):(This is a bit more subtle.)

Suppose R/I is a field, then if J is an ideal such that I ( J ⊆ R then let
b ∈ J − I which means b + I 6= 0 + I .

This implies that b + I is a unit of R/I which means there exists c + I
where (c + I )(b + I ) = 1 + I so that bc − 1 ∈ I , but also bc − 1 ∈ J.

But since b ∈ J then bc ∈ J so bc − (bc − 1) = 1 ∈ J too, and so J = R .

As such, J is a maximal deal.
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For the converse, suppose I is maximal in R and consider π : R → R/I
where π(x) = x + I .

We have that if M is an ideal of R/I then π−1(M) is an ideal of R that
contains I .

So if x ∈ R − I (i.e. x + I is a non-zero element of R/I ) then π−1(〈x + I 〉)
is an ideal of R that contains I ,but since I is maximal then
π−1(〈x + I 〉) = R , so in particular π(1) = 1 + I ∈ 〈x + I 〉.

So this means there exists y + I such that (x + I )(y + I ) = 1 + I , which
means y + I = (x + I )−1, i.e. R/I is a field.
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A very natural consequence of this theorem is the following:

Corollary

If R is a commutative ring with unity, and I ⊆ R is a maximal ideal, then
it is automatically a prime ideal.

The proof of this is basically a matter of thinking of the relevant
definitions.

If R/I is a field then it is also a domain since a field cannot contain zero
divisors.

As such R/I is a domain so I is prime.

Timothy Kohl (Boston University) MA542 Lecture February 21, 2025 11 / 15



We’ve seen a number of ideas hinted at in this discussion.

In particular, in a ring like Q[x ], an ideal 〈p(x)〉 which results in a quotient
Q[x ]/〈p(x)〉 that is a field is tied to the roots of p(x) being numbers α
that do not lie in Q, e.g. for x2 − 2 it is

√
2.

Concordantly, the resulting field Q[x ]/〈p(x)〉 is isomorphic to a field which
contains not only Q but also this very same root α, again with our
example from earlier in mind

Q[x ]/〈x2 − 2〉 ∼= Q(
√
2)

so the question we have is, what about p(x) specifically makes 〈p(x)〉 a
maximal ideal?
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And similarly, for the case of an ideal, say a principal one I = 〈a〉 ⊆ R ,
what is it about the element ’a’ that makes the resulting ideal I = 〈a〉
prime? (or not prime)

An example to consider (which touches on both questions) is the ideal
I = 〈x2 − 4〉 ⊆ Q[x ] and the resulting quotient ring Q[x ]/I .

The key feature to note is that this quotient ring is not a domain since
((x − 2) + I )((x + 2) + I ) = (x2 − 4) + I and of course
(x2 − 4) + I = 0 + I while (x − 2) + I 6= 0 + I since x − 2 6∈ I .

The reason that x − 2 6∈ I is that I consists of all multiples of x2 − 4 and
obviously x − 2 is not a multiple of x2 − 4.
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So we have that (x − 2) + I and (x + 2) + I are zero-divisors in Q[x ]/I
which is not too surprising since I = 〈x2 − 4〉 and x − 2 | x2 − 4 and
x + 2 | x2 − 4 and indeed, x2 − 4 = (x − 2)(x + 2).

And it is this fact which leads to these zero divisor, namely that x2 − 4 is
factorable as a product of lower degree polynomials.

So I = 〈x2 − 4〉 is certainly not a prime ideal (since the quotient ring
Q[x ]/I isn’t a domain), so I is certainly not a maximal ideal.

In contrast, I = 〈x2 − 2〉 is a prime ideal (and in fact maximal) precisely
because x2 − 2 isn’t factorable in Q[x ].

Note, it turns out that Q[x ]/〈x2 − 4〉 ∼= Q×Q as rings and the direct
product on the right is certainly not a domain since (1, 0) and (0, 1) are
no-zero elements whose product is (1, 0)(0, 1) = (0, 0).
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What we shall discuss in the next section is the notion of ’divisibility’ in a
ring, in particular how to quantify what it means for an element of a ring
to be ’irreducible’ or ’prime’.

We’ve seen the term irreducible applied to polynomials, and the term
prime is, of course, familiar from basic arithmetic, and it does indeed tie in
with the notion of prime ideal.

Also tied in with this discussion is the role of the units in a ring.

In addition, we will be looking at different sub-categories of rings, whose
definitions are tied in with these terms, and also those determined by the
nature of the ideals of the ring.

Recall we showed earlier that all ideals in Z have the form 〈n〉 for some n.

Not all rings have this property. So stay tuned...

Timothy Kohl (Boston University) MA542 Lecture February 21, 2025 15 / 15


