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Chains of Ideals

We need to discuss ’chains’ of ideals

I1 ⊆ I2 ⊆ · · · ⊆ . . .

namely each ideal is contained in the next one after it, although the
containments may, or may not be proper.

For such a chain, we can ask if it terminates.
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Definition

In a commutative ring R , we say the ascending chain condition (ACC)
holds if for any chain of ideals

I1 ⊆ I2 ⊆ . . .

there is an index r such that Ir−1 ⊆ Ir = Ir+1 = Ir+2 = . . . , that is the
chain ’stabilizes’.
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This is crucial for proving certain rings are UFDs.

Lemma

Every PID satisfies the ACC.

Proof.

Let I1 ⊆ I2 ⊆ . . . be any chain in the PID we will call D. Consider the set
J = I1 ∪ I2 ∪ · · · , namely the union of all the ideal in the chain.We can
show that J is an ideal. If x , y ∈ J then x ∈ Im and y ∈ In for some m, n.
We can assume that m ≤ n which means x , y ∈ In so x − y ∈ In and if
d ∈ D then any x ∈ J is in some Im so dx ∈ Im so dx ∈ J since J is the
union of all the I ’s.
Since J is an ideal, then J = 〈z〉 for some z ∈ D, but this means z ∈ Ir for
some r so 〈z〉 ⊆ Ir ⊆ J = 〈z〉, but this means Ir = 〈z〉 and that It = 〈z〉
for any t ≥ r as well.
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What this means is that in a PID D, a chain of ideals, where each
containment can only have a finite number of ideals.

I1 ( I2 ( I3 ( · · · ( Ir

and therefore any ideal that properly contains Ir must actually be D.

What this means is that Ir = 〈p〉 and if p is not irreducible then p = xy

where x and y are non-units and so Ir = 〈p〉 ( 〈x〉 which would imply that
〈x〉 = D meaning that x is actually a unit, which is a contradiction.

The bottom line is that p must actually be irreducible.
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Now, we can prove one of the main results about unique factorization.

Theorem

If D is a PID then it is a UFD.

PROOF: The proof is in three parts,

(1) show that every non-zero non-unit is divisible by at least one irreducible

(2) deduce that every non-zero non-unit is a product of irreducibles

(3) this factorization is unique up to order and associates.

So we begin by proving that a non-zero, non-unit has an irreducible factor.
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Let a ∈ D be a non-zero non-unit, we wish to first show that a is divisible
by at least one irreducible.

If a is irreducible, then we’re done, otherwise a = x1y1 where x1,y are
non-zero, non-units so

〈a〉 ( 〈x1〉
and if x1 is not irreducible, it’s a product x2y2 where x2 and y2 are
non-zero, non-units and so

〈a〉 ( 〈x1〉 ( 〈x2〉

and we continue checking to see if xi is irreducible, and if not, it has a
factor xi+1 which leads to in (increasing) chain of principal ideals Ii = 〈xi 〉

〈a〉 ( I1 ( I2 · · · ( Ii ( Ii+1 . . .
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PROOF (continued)
But now, because D is a PID, this chain must terminate

〈a〉 ( I1 ( I2 · · · ( Ii ( Ii+1 · · · ( Ir

where Ir = 〈p〉 so any larger ideal containing Ir would have to be all of D.
This means that p must be irreducible, otherwise it would have a factor
giving us a larger ideal containing Ir which we saw earlier is impossible.

So now, we have that a has an irreducible factor p1, and if a is not already
irreducible, then a = p1b where b is a non-zero, non-unit, so either b is
irreducible, or b has an irreducible factor p2 in which case, either
a = p1p2c for some non-zero, non-unit c which in turn...
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So every non-zero, non-unit a ∈ D is a product of irreducibles
a = p1p2 · · · pn.

So what if a = q1q2 · · · qm is another such factorization?

Well since p1 is a factor of a that means p | q1q2 · · · qm but in a PID
irreducibles are prime so p1 divides one of the qj , so assume that p1 | q1,
so that q1 = u1p1.

So this means p1p2 · · · pn = u1p1q2 · · · qm and since D is a domain we can
cancel p1 from both sides to get p2p3 · · · pn = (u1q2)q3 · · · qm and we can
continue to divide both sides by p2, p3 and so on, and so n ≤ m but if
n < m then we get

1 = (u1u2 . . . un)qn+1 · · · qm

which is impossible since the left side is the unit 1, and the right has
irreducible factors (i.e. isn’t a unit.)
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So we must have n = m and so a = p1 · · · pm where if a = q1q2 . . . qm is
another factorization then we may assume that each qi = uipi for ui a
prime.

Moreover,

p1 · · · pm = q1q2 . . . qm

= (u1p1)(u2p2) . . . (umpm)

↓
1 = u1u2 · · · um
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More on UFDs

We just proved that every PID is a UFD.

Corollary

For every field F , the ring F [x ] is a UFD.

Of course, we outlined a proof of this a few lectures earlier, but the full
statement follows easily from knowing that F [x ] is a PID.

So, for example, Q[x ] is a UFD, and it begs the question, is Z[x ] a UFD?

We saw that Z[x ] is not a PID so we can’t use the PID → UFD

argument.
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The proof that Z[x ] is a UFD follows from a much more general and
powerful fact.

Theorem

If R is a UFD, then R [x ] is a UFD.

The proof is basically built on some of the ideas we used in proving that a
polynomial in Z[x ] being factorable in Q[x ] implies that it’s actually
factorable in Z[x ]. (e.g. Gauss’ Lemma)

The full argument is developed in the text.
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We mentioned earlier that the Gaussian integers Z[i ] = Z[
√
−1] are a PID

and therefore a UFD.

We also saw that in Z[
√
−3] one has an irreducible element, which is not a

prime, specifically 1 +
√
−3, and what’s interesting is that the

demonstration of this was by using the fact that

4 = (1 +
√
−3)(1−

√
−3) = 2 · 2

where we also observe that 2 is an irreducible.

This also shows that Z[
√
−3] is not a UFD since we have two distinct

factorizations of 4 into irreducibles where (1±
√
−3) ∤ 2. (i.e. they are not

associates of each other)
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So we have the following basic containments of ring categories.

Com
mutative Ring

Domain

UFD

PID

Actually we could also fit in one more category, namely fields, but where would fields go in
this picture?
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Commutative Ring

Domain

UFD

PID

Field

Why? Well, there are two questions, what are the ideals of a field, and what are the irreducibles?

Well, since every non-zero element of a field F is a unit, then any ideal, except {0} contains at least one
unit, and is therefore all of F !

And since every non-zero element of F is a unit, then there are no irreducibles.
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We have seen that in rings like Z and F [x ] (for F a field) there is a
division algorithm, which allowed us to deduce that these rings are PIDs
and therefore UFDs.

This prompts one to ask if there are other rings where some version of a
division algorithm holds?

It turns out that this is indeed the case, and the key is a function which
one my apply to all elements of the ring, (e.g. the degree function in F [x ])
and the value of this function when applied to the ’remainder’ that
distinguishes it from the divisor.
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