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Extension Fields

Definition

A field E is an extension field of a field F if F C E and the operations in
E restricted to F are the same as the operations in F. (i.e. F is subring of
E that is also a field).

For example
@ Q(V2) is an extension field of Q
@ R is an extension field of Q

@ C is an extension field of R (and therefore of Q too)
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The construction Q[x]/(x? — 2) =2 Q(+/2) motivates the following
fundamental result.

Theorem (The Fundamental Theorem of Field Theory)

(Kronecker - 1887)
Let F be a field and let f(x) be a non-constant polynomial in F[x]. Then
there is an extension field E of F which contains a root of f(x).

PROOF: Given f(x) let p(x) be an irreducible factor of f(x), which exists
because F[x] is a UFD.

Let E = F[x]/(p(x)) which is a field because p(x) is irreducible, and
therefore (p(x)) is maximal.

We may view E as an extension field of F as a — a + (p(x)) for each
aeF, ie ¢:F — F[x]/{p(x)) given by ¢(a) = a+ (p(x)) is injective
(i.e. one-to-one).

So ¢(F) is a subset of E which is isomorphic to F, so we may regard E as
an extension field of ¢(F).
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An easy example we can give of this is Q — Q/(x? — 2) where
arr a+ (x?2—2) CQ[x]/(x?—2), since

{at(*-2)|acQ}=Q

That E contains a root of f(x) can be seen as follows, let | = (p(x))
where p(x) = apx" + a,_1x" "1 + -+ + a;x + ag then let « = x + | and
consider p(a) which makes sense since p is a polynomial, so we can plug
in the coset o = x + [ itself.
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Indeed, for any m >0, ™ = (x +1)™ = x™ 4+ | and so

p(a) = apa” + ap_10" M+ 4 aja+ag

=a,(xX"+ 1) Fap 1 (X" P+ )+ Fan(x+ 1)+ a1+ 1)
= (anx" + ap_1x" 1+ aix+ag) + 1
=p(x)+1
—0+/
so o = x + | is a root of p(x), where a is an element of F[x]/{p(x)),

which contains ¢(F) = F.
For example in Q[x]/(x? — 2) we have that

(x+ (2= 2) = (24 (2= 2) = (2 = 2) + (= 2) =0+ (x* - 2)

ie. x+ (x? —2) is like V2.
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Examples:
o Q[x]/{(x*+1) = Q(i)
° Qx]/(x* —2) = Q(v2)
o R[x]/(x>+1)=C
o Z3[x]/ (x> +1)
an extension field of Z3 containing a root of x? +1 = x> — 2
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Before going further, let's take a step back and consider what is meant by
'adjoining’ a root, such as v/2, of an irreducible polynomial, like x? — 2, to
a field like @, and why we write Q(v/2) = {a+ bv/2 | a,b € Q}.

Basically, we ask, using the operations of + and -, what are all the
numbers we can form from combining the elements of the set

QU {v2}

using these operations?

Specifically, we consider, for each polynomial f(x) € Q[x], the numbers
f(\/§) and the question is, can we easily describe this set?

Moreover, is this set of numbers a field?
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Well, starting with V2, we can multiply it by —1 to get —/2, and
certainly, for rational numbers a, b we can form the combination a + bv/2,
and since (v/2)? = 2 € Q then all higher powers of v/2 are V22" = om
and \/§2m+1 =2m\/2.

For example if f(x) = x® + 2x* — 2x3 + 3x? + x + 1 then

(VD) = (V3P + 2(V3)*  2(VDP +3(VDP + V3 +1

:4f2+2(4)—%(2ﬁ)+3(2)+f2+1
=15+2V2

and in general for any f(x) the value f(1/2) condenses down to an
expression of the form a + by/2.

And then we can manually verify that {a + b\v/2 | a, b € Q} forms a ring,
and in fact, a field.
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So in general, given Q and some number « which is the root of a
polynomial we can define

Q(a) = {f(a) | f(x) € Q[x]}
and, later on, we will verify that this is always a field extension of Q.
Moreover, although not completely obvious at this moment, the fact that

a is the root of some polynomial in Q[x] is important in determining the
'structure’ of Q(a).

For perspective, (especially with the example of Q(1/2) we just explored in
mind), consider what Q(7) might look like!
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If we look at the example of the extension field Q(v/2)/Q the construction
of it as Q[x]/(x? — 2) was motivated by the quest to obtain a root of
x? 2.

And in the field Q(\/E) we not only have v/2, but the other root of it,
namely —+/2, and similarly Q(i) contains not only, i, but also —i, both of
which are the roots of x2 + 1.

In the next example, we see a somewhat different situation.
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Consider x3 — 2 € Q[x] which we can show is irreducible.

The roots are
V2, (V2, (*V2

where

= —14+/-3
C:ef} :f

is a primitive (complex) cube root of unity, namely a root of
() =5 =x* +x+1

So, in particular, one of the roots is a real number, while the other two are
complex.
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So if we construct the field extension of Q using the quotient
Q[x]/{x® — 2) we get that x + (x3 — 2) is a 'cube root of 2.

If we want to match this up with a field obtained by 'adjoining’ a root of
x3 — 2 to Q (like we did for Q(+/2) where we adjoin 1/2) the question is,
which root?

i.e. We have Q(v/2), Q(¢v/2), and Q(¢?V/2), so are these the same?

No, let's see why.
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The powers of 2 are 1, \3/5, \3/52, and since \3/53 = 2 then \3754 =22
\3/55 = 2\3752, etc.

The point is that every power of v/2 is a linear combination of the
elements of the set {1, V2, \3/52}

As such

Q(V2) = {a+ bV2+c(¥V2)? | a,b,c € Q}

so we can think of Q(+v/2) as a three dimensional vector space over Q.

Also, we observe that Q(v/2) C R.
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In contrast, the distinct powers of (/2 are {1,{\3/5, C2(\3/§)2} and the
distinct powers of ¢?v/2 are {1,¢?v/2,((v/2)?} and so we have

Q(V2) = {a+bV2+c(V2)? | a,b,c € Q}
Q(¢V2) = {a+ bCV2+ cC?(V2)? | a,b,c € Q}
Q(¢3V2) = {a+ bC?V2 + c¢(V2)? | a,b,c € Q}

And we note that Q(¢+v/2) and Q(¢?v/2) both contain complex numbers,
whereas Q(v/2) is a purely real field.

Moreover, ¢v/2 ¢ Q(¢%v/2). Why?
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Can we find a, b, ¢ € Q such that (/2 = a+ b(?V/2 + c((V2)??

_ 143 1 VB,
(=—% ~ 3t %]
Cz_—l—\/—_3 1 \/§I_

2 2 2

To simplify things a bit we can multiply both sides by ¢? to yield
V2 = a¢? + b(V/2 + c(V/2)?
which can be rewritten as
V2(1 — cv/2) = a¢? + b((V2)

where we note that the left hand side is a real number.
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So now we have

V2(1 — cV/2) = ac? + b¢(V2)
=a(—C—1)+ b2
= —a+((-a+bV2)

and, as we already observed, the left side is a purely real number, which
means
(23 bV
2 2
which is impossible since it would imply that § = /2 for a,b € Q.

)=0
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So what we've shown is that Q(+/2), Q(¢v/2) and Q(¢?v/2) are all
distinct extension fields of Q, and each contains exactly one root of x3 — 2
and we can 'diagram’ this as follows, indicating the containments.

2\fo)/ Q(¢?V2)

And, we can actually show that Q(v/2) N Q(¢V/2) =
Q(V2) NQ(¢?V2) = Q, and Q(¢V2) NQ(¢*V2) = Q

Moreover, we note that 'adjoining’ one of the roots of x> — 2 to Q yields a
field extension which does not contain the other two roots.

This is in contrast with Q(v/2) which contains both roots of x> — 2.
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