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Extension Fields

Definition

A field E is an extension field of a field F if F ⊆ E and the operations in
E restricted to F are the same as the operations in F . (i.e. F is subring of
E that is also a field).

For example

Q(
√
2) is an extension field of Q

R is an extension field of Q

C is an extension field of R (and therefore of Q too)
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The construction Q[x ]/〈x2 − 2〉 ∼= Q(
√
2) motivates the following

fundamental result.

Theorem (The Fundamental Theorem of Field Theory)

(Kronecker - 1887)
Let F be a field and let f (x) be a non-constant polynomial in F [x ]. Then
there is an extension field E of F which contains a root of f (x).

PROOF: Given f (x) let p(x) be an irreducible factor of f (x), which exists
because F [x ] is a UFD.
Let E = F [x ]/〈p(x)〉 which is a field because p(x) is irreducible, and
therefore 〈p(x)〉 is maximal.
We may view E as an extension field of F as a 7→ a + 〈p(x)〉 for each
a ∈ F , i.e. φ : F → F [x ]/〈p(x)〉 given by φ(a) = a + 〈p(x)〉 is injective
(i.e. one-to-one).
So φ(F ) is a subset of E which is isomorphic to F , so we may regard E as
an extension field of φ(F ).
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An easy example we can give of this is Q 7→ Q/〈x2 − 2〉 where
a 7→ a + 〈x2 − 2〉 ⊆ Q[x ]/〈x2 − 2〉, since

{a + 〈x2 − 2〉 | a ∈ Q} ∼= Q

That E contains a root of f (x) can be seen as follows, let I = 〈p(x)〉
where p(x) = anx

n + an−1x
n−1 + · · ·+ a1x + a0 then let α = x + I and

consider p(α) which makes sense since p is a polynomial, so we can plug
in the coset α = x + I itself.
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Indeed, for any m ≥ 0, αm = (x + I )m = xm + I and so

p(α) = anα
n + an−1α

n−1 + · · ·+ a1α+ a0

= an(x
n + I ) + an−1(x

n−1 + I ) + · · ·+ a1(x + I ) + a0(1 + I )

= (anx
n + an−1x

n−1 + · · ·+ a1x + a0) + I

= p(x) + I

= 0 + I

so α = x + I is a root of p(x), where α is an element of F [x ]/〈p(x)〉,
which contains φ(F ) ∼= F .
For example in Q[x ]/〈x2 − 2〉 we have that

(x + 〈x2 − 2〉)2 − (2 + 〈x2 − 2〉) = (x2 − 2) + 〈x2 − 2〉 = 0 + 〈x2 − 2〉

i.e. x + 〈x2 − 2〉 is like
√
2.
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Examples:

Q[x ]/〈x2 + 1〉 ∼= Q(i)

Q[x ]/〈x2 − 2〉 ∼= Q(
√
2)

R[x ]/〈x2 + 1〉 ∼= C

Z3[x ]/〈x2 + 1〉
an extension field of Z3 containing a root of x2 + 1 = x2 − 2
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Before going further, let’s take a step back and consider what is meant by
’adjoining’ a root, such as

√
2, of an irreducible polynomial, like x2 − 2, to

a field like Q, and why we write Q(
√
2) = {a + b

√
2 | a, b ∈ Q}.

Basically, we ask, using the operations of + and ·, what are all the
numbers we can form from combining the elements of the set

Q ∪ {
√
2}

using these operations?

Specifically, we consider, for each polynomial f (x) ∈ Q[x ], the numbers
f (
√
2), and the question is, can we easily describe this set?

Moreover, is this set of numbers a field?
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Well, starting with
√
2, we can multiply it by −1 to get −

√
2, and

certainly, for rational numbers a, b we can form the combination a+ b
√
2,

and since (
√
2)2 = 2 ∈ Q then all higher powers of

√
2 are

√
2
2m

= 2m

and
√
2
2m+1

= 2m
√
2.

For example if f (x) = x5 + 2x4 − 3
2x

3 + 3x2 + x + 1 then

f (
√
2) = (

√
2)5 + 2(

√
2)4 − 3

2
(
√
2)3 + 3(

√
2)2 +

√
2 + 1

= 4
√
2 + 2(4) − 3

2
(2
√
2) + 3(2) +

√
2 + 1

= 15 + 2
√
2

and in general for any f (x) the value f (
√
2) condenses down to an

expression of the form a+ b
√
2.

And then we can manually verify that {a + b
√
2 | a, b ∈ Q} forms a ring,

and in fact, a field.
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So in general, given Q and some number α which is the root of a
polynomial we can define

Q(α) = {f (α) | f (x) ∈ Q[x ]}

and, later on, we will verify that this is always a field extension of Q.

Moreover, although not completely obvious at this moment, the fact that
α is the root of some polynomial in Q[x ] is important in determining the
’structure’ of Q(α).

For perspective, (especially with the example of Q(
√
2) we just explored in

mind), consider what Q(π) might look like!
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If we look at the example of the extension field Q(
√
2)/Q the construction

of it as Q[x ]/〈x2 − 2〉 was motivated by the quest to obtain a root of
x2 − 2.

And in the field Q(
√
2) we not only have

√
2, but the other root of it,

namely −
√
2, and similarly Q(i) contains not only, i , but also −i , both of

which are the roots of x2 + 1.

In the next example, we see a somewhat different situation.
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Consider x3 − 2 ∈ Q[x ] which we can show is irreducible.

The roots are
3
√
2, ζ

3
√
2, ζ2

3
√
2

where

ζ = e
2π
3 =

−1 +
√
−3

2

is a primitive (complex) cube root of unity, namely a root of

Φ3(x) =
x3−1
x−1 = x2 + x + 1.

So, in particular, one of the roots is a real number, while the other two are
complex.
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So if we construct the field extension of Q using the quotient
Q[x ]/〈x3 − 2〉 we get that x + 〈x3 − 2〉 is a ’cube root of 2’.

If we want to match this up with a field obtained by ’adjoining’ a root of
x3 − 2 to Q (like we did for Q(

√
2) where we adjoin

√
2) the question is,

which root?

i.e. We have Q( 3
√
2), Q(ζ 3

√
2), and Q(ζ2 3

√
2), so are these the same?

No, let’s see why.
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The powers of 3
√
2 are 1, 3

√
2, 3
√
2
2
, and since 3

√
2
3
= 2 then 3

√
2
4
= 2 3

√
2,

3
√
2
5
= 2 3

√
2
2
, etc.

The point is that every power of 3
√
2 is a linear combination of the

elements of the set {1, 3
√
2, 3
√
2
2}.

As such
Q(

3
√
2) = {a + b

3
√
2 + c(

3
√
2)2 | a, b, c ∈ Q}

so we can think of Q( 3
√
2) as a three dimensional vector space over Q.

Also, we observe that Q( 3
√
2) ⊆ R.
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In contrast, the distinct powers of ζ 3
√
2 are {1, ζ 3

√
2, ζ2( 3

√
2)2} and the

distinct powers of ζ2 3
√
2 are {1, ζ2 3

√
2, ζ( 3

√
2)2} and so we have

Q(
3
√
2) = {a + b

3
√
2 + c(

3
√
2)2 | a, b, c ∈ Q}

Q(ζ
3
√
2) = {a + bζ

3
√
2 + cζ2(

3
√
2)2 | a, b, c ∈ Q}

Q(ζ2
3
√
2) = {a + bζ2

3
√
2 + cζ(

3
√
2)2 | a, b, c ∈ Q}

And we note that Q(ζ 3
√
2) and Q(ζ2 3

√
2) both contain complex numbers,

whereas Q( 3
√
2) is a purely real field.

Moreover, ζ 3
√
2 6∈ Q(ζ2 3

√
2). Why?
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Can we find a, b, c ∈ Q such that ζ 3
√
2 = a+ bζ2 3

√
2 + cζ( 3

√
2)2?

ζ =
−1 +

√
−3

2
= −1

2
+

√
3

2
i

ζ2 =
−1−

√
−3

2
= −1

2
−

√
3

2
i

To simplify things a bit we can multiply both sides by ζ2 to yield

3
√
2 = aζ2 + bζ

3
√
2 + c(

3
√
2)2

which can be rewritten as

3
√
2(1− c

3
√
2) = aζ2 + bζ(

3
√
2)

where we note that the left hand side is a real number.
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So now we have

3
√
2(1− c

3
√
2) = aζ2 + bζ(

3
√
2)

= a(−ζ − 1) + bζ
3
√
2

= −a+ ζ(−a + b
3
√
2)

= (−a

2
− b 3

√
2

2
) + (−a

√
3

2
+

b
√
3 3
√
2

2
)i

and, as we already observed, the left side is a purely real number, which
means

(−a
√
3

2
+

b
√
3 3
√
2

2
) = 0

which is impossible since it would imply that a

b
= 3

√
2 for a, b ∈ Q.
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So what we’ve shown is that Q( 3
√
2), Q(ζ 3

√
2) and Q(ζ2 3

√
2) are all

distinct extension fields of Q, and each contains exactly one root of x3 − 2
and we can ’diagram’ this as follows, indicating the containments.

Q( 3
√
2)

❑❑
❑❑

❑❑
❑❑

❑❑
❑

Q(ζ 3
√
2) Q(ζ2 3

√
2)

rr
rr
rr
rr
rr
rr

Q

And, we can actually show that Q( 3
√
2) ∩Q(ζ 3

√
2) = Q,

Q( 3
√
2) ∩Q(ζ2 3

√
2) = Q, and Q(ζ 3

√
2) ∩Q(ζ2 3

√
2) = Q.

Moreover, we note that ’adjoining’ one of the roots of x3 − 2 to Q yields a
field extension which does not contain the other two roots.

This is in contrast with Q(
√
2) which contains both roots of x2 − 2.

Timothy Kohl (Boston University) MA542 Lecture March 5, 2025 17 / 17


