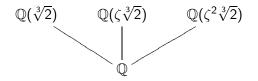
MA542 Lecture

Timothy Kohl

Boston University

March 7, 2025

So what we've shown is that $\mathbb{Q}(\sqrt[3]{2})$, $\mathbb{Q}(\zeta\sqrt[3]{2})$ and $\mathbb{Q}(\zeta^2\sqrt[3]{2})$ are all *distinct* extension fields of \mathbb{Q} , and each contains exactly one root of $x^3 - 2$ and we can 'diagram' this as follows, indicating the containments.



And, we can actually show that $\mathbb{Q}(\sqrt[3]{2}) \cap \mathbb{Q}(\zeta\sqrt[3]{2}) = \mathbb{Q}$, $\mathbb{Q}(\sqrt[3]{2}) \cap \mathbb{Q}(\zeta^2\sqrt[3]{2}) = \mathbb{Q}$, and $\mathbb{Q}(\zeta\sqrt[3]{2}) \cap \mathbb{Q}(\zeta^2\sqrt[3]{2}) = \mathbb{Q}$.

Moreover, we note that 'adjoining' one of the roots of $x^3 - 2$ to \mathbb{Q} yields a field extension which does **not** contain the other two roots.

This is in contrast with $\mathbb{Q}(\sqrt{2})$ which contains *both* roots of $x^2 - 2$.

So the question is, which of these is $\mathbb{Q}[x]/\langle x^3-2\rangle$? We can answer this as follows:

Theorem

The three extension fields $\mathbb{Q}(\sqrt[3]{2})$, $\mathbb{Q}(\zeta\sqrt[3]{2})$, and $\mathbb{Q}(\zeta^2\sqrt[3]{2})$ are all isomorphic to $\mathbb{Q}[x]/\langle x^3-2\rangle$.

Proof.

If $I = \langle x^3 - 2 \rangle$ and we let $r_i = \zeta^i \sqrt[3]{2}$ for i = 0, 1, 2 then define:

$$\psi_i : \mathbb{Q}[x]/I \to \mathbb{Q}(r_i)$$
 by
 $\psi_i(a + bx + cx^2 + I) = a + br_i + cr_i^2$

and verify that this is 1-1, onto, and a homomorphism, i.e. $\psi_i((f(x) + I) + (g(x) + I)) = \psi_i(f(x) + I) + \psi_i(g(x) + I)$ and $\psi_i((f(x) + I)(g(x) + I)) = \psi_i(f(x) + I)\psi_i(g(x) + I)$ which is a relatively easy exercise. So the point is, all three fields $\mathbb{Q}(\sqrt[3]{2})$, $\mathbb{Q}(\zeta\sqrt[3]{2})$, and $\mathbb{Q}(\zeta^2\sqrt[3]{2})$ are isomorphic to $\mathbb{Q}[x]/\langle x^3 - 2 \rangle$ and therefore to each other as well, even though they are *distinct* extension fields of \mathbb{Q} .

So the contrast between these three fields, none of which contains all three roots, as compared with $\mathbb{Q}(\sqrt{2})$, which contains both roots of $x^2 - 2$ motivates the following definition.

Definition

Let *E* be an extension field of *F* and let $f(x) \in F[x]$.

We say that f(x) splits in E if f(x) can be factored into a product of linear factors in E[x].

We say that E is the/a splitting field of f(x) if it splits in E but in **no** proper subfield of E.

So for example, since $x^2 - 2 \in \mathbb{Q}[x]$ splits as $(x - \sqrt{2})(x + \sqrt{2}) \in \mathbb{R}[x]$ then we say $x^2 - 2$ splits in \mathbb{R} .

However, we don't *need* all of \mathbb{R} so to speak since $x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2}) \in \mathbb{Q}(\sqrt{2})[x]$, and $\mathbb{Q}(\sqrt{2})$ is a splitting field of $x^2 - 2$ since there is no subfield of $\mathbb{Q}(\sqrt{2})$ wherein $x^2 - 2$ factors.

Indeed, since $x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2})$ then any subfield of $\mathbb{Q}(\sqrt{2})$ that splits $x^2 - 2$ must contain both $\sqrt{2}$ and $-\sqrt{2}$ which means it contains $\mathbb{Q}(\sqrt{2})$ so $\mathbb{Q}(\sqrt{2})$ is the smallest subfield of itself which contains these roots and is therefore a splitting field.

As mentioned earlier, the polynomial $x^2 - 2 \in \mathbb{Q}[x]$ splits in a field like \mathbb{R} , but that $\mathbb{Q}(\sqrt{2})$ is the splitting field in that it is the 'minimal' or 'smallest' extension of \mathbb{Q} that contains the roots of $x^2 - 2$.

In particular, $x^2 - 2$ is irreducible in $\mathbb{Q}[x]$ but is *not* irreducible in $\mathbb{Q}(\sqrt{2})[x]$ since, in $\mathbb{Q}(\sqrt{2})[x]$ it equals $(x - \sqrt{2})(x + \sqrt{2})$.

And the field extension of \mathbb{Q} given by Kronecker's theorem, $\mathbb{Q}[x]/\langle x^2 - 2 \rangle$, is isomorphic to $\mathbb{Q}(\sqrt{2})$.

In contrast, for $x^3 - 2 \in \mathbb{Q}[x]$, the field $\mathbb{Q}[x]/\langle x^3 - 2 \rangle$ is isomorphic to all three fields $\mathbb{Q}(\sqrt[3]{2})$, $\mathbb{Q}(\zeta\sqrt[3]{2})$, $\mathbb{Q}(\zeta^2\sqrt[3]{2})$, but each contains only one root of $x^3 - 2$.

So what about a splitting field for $x^3 - 2$?

It splits in \mathbb{C} but this is not minimal at all.

Since the roots are $\sqrt[3]{2}$, $\zeta\sqrt[3]{2}$, and $\zeta^2\sqrt[3]{2}$ then any splitting field (over \mathbb{Q}) must contain these three roots.

Recall that

$$\mathbb{Q}(\sqrt[3]{2}) = \{a + b\sqrt[3]{2} + c(\sqrt[3]{2})^2 \mid a, b, c \in \mathbb{Q}\} \\ \mathbb{Q}(\zeta\sqrt[3]{2}) = \{a + b\zeta\sqrt[3]{2} + c\zeta^2(\sqrt[3]{2})^2 \mid a, b, c \in \mathbb{Q}\} \\ \mathbb{Q}(\zeta^2\sqrt[3]{2}) = \{a + b\zeta^2\sqrt[3]{2} + c\zeta(\sqrt[3]{2})^2 \mid a, b, c \in \mathbb{Q}\}$$

So if E/\mathbb{Q} is a splitting field for $x^3 - 2$ then it contains $\{\sqrt[3]{2}, \sqrt[3]{2}^2, \zeta\sqrt[3]{2}, \zeta^2\sqrt[3]{2}^2, \zeta^2\sqrt[3]{2}^2, \zeta\sqrt[3]{2}^2\}$

so it must contain, for example

$$\frac{\zeta\sqrt[3]{2}^2}{\sqrt[3]{2}^2} = \zeta$$

as well as
$$\frac{\zeta^2 \sqrt[3]{2}}{\sqrt[3]{2}} = \zeta^2$$
 etc.

But $\mathbb{Q}(\zeta\sqrt[3]{2})$ and $\mathbb{Q}(\zeta^2\sqrt[3]{2})$ don't contain ζ , and clearly $\mathbb{Q}(\sqrt[3]{2})$ doesn't either since ζ is complex and $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{R}$.

The powers of ζ are $\{1, \zeta, \zeta^2\}$ since $\zeta^3 = 1$.

However, we must make an important observation. Since ζ is a root of $x^2 + x + 1$ then

$$\zeta^{2} + \zeta + 1 = 0$$

$$\downarrow$$

$$\zeta^{2} = -\zeta - 1$$

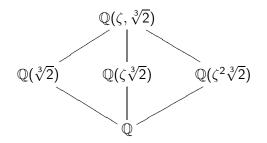
i.e. ζ^2 is a linear combination of 1, ζ .

As such we note then that $\mathbb{Q}(\zeta) = \{a + b\zeta \mid a, b \in \mathbb{Q}\}.$

What we end up with is that (the) splitting field of $x^3 - 2$ over \mathbb{Q} is the field

$$\mathbb{Q}(\zeta, \sqrt[3]{2}) = \{a + b\sqrt[3]{2} + c\sqrt[3]{2}^2 + d\zeta + e\zeta\sqrt[3]{2} + f\zeta\sqrt[3]{2}^2 \mid a, b, c, d, e, f \in \mathbb{Q}\}$$
namely the \mathbb{Q} span of $\{1, \sqrt[3]{2}, \sqrt[3]{2}^2, \zeta, \zeta\sqrt[3]{2}, \zeta\sqrt[3]{2}^2\}.$

And we can see that this field is an extension field of $\mathbb{Q}(\sqrt[3]{2}), \mathbb{Q}(\zeta\sqrt[3]{2})$, and $\mathbb{Q}(\zeta^2\sqrt[3]{2})$, which are all extension fields of \mathbb{Q} , which we can diagram.



Now, $\mathbb{Q}(\zeta, \sqrt[3]{2})$ contains all the roots of $x^3 - 2$, but is there a proper subfield $E \subseteq \mathbb{Q}(\zeta, \sqrt[3]{2})$ which contains all the roots?

No, and the reason is that, as we saw, any such field must contain ζ and $\sqrt[3]{2}$ and therefore must contain $\mathbb{Q}(\zeta, \sqrt[3]{2})$ which means it must *equal* $\mathbb{Q}(\zeta, \sqrt[3]{2})$.

So does this same idea work for an arbitrary polynomial $f(x) \in F[x]$?

Theorem

Given $f(x) \in F[x]$, then there exists a splitting field E containing F for f(x).

Proof.

We use induction on n = deg(f(x)). If deg(f(x)) = 1 then f(x) = ax + band so $\alpha = \frac{-b}{a}$ is the root of f(x) and $\alpha \in F$, so F is the splitting field of f(x).

Now say deg(f(x)) > 1 then there exists an extension field field $F(a_1)$ which contains (at least) one root of f(x), and so, in $F(a_1)[x]$ we have $f(x) = (x - a_1)g(x)$ where now deg(g(x)) = n - 1, and so, inductively, we can assume that there is a field E (which is an extension of $F(a_1)$) which is a splitting field of g(x) but then E is a splitting field (over F) of f(x). \Box

Here is a somewhat alternative way of thinking about $\mathbb{Q}(\zeta, \sqrt[3]{2})$ as a splitting field of $x^3 - 2$.

Since $\mathbb{Q}(\sqrt[3]{2})$ contains at least one root of $x^3 - 2$ then in $\mathbb{Q}(\sqrt[3]{2})$, $x^3 - 2 = (x - \sqrt[3]{2})g(x)$, where

$$g(x) = (x - \zeta\sqrt[3]{2})(x - \zeta^2\sqrt[3]{2})$$

= $x^2 - (\zeta + \zeta^2)\sqrt[3]{2}x + \sqrt[3]{2}^2$
= $x^2 + \sqrt[3]{2}x + \sqrt[3]{2}^2$

and so the field extension of $\mathbb{Q}(\sqrt[3]{2})$ which contains the other two roots is $\mathbb{Q}(\sqrt[3]{2})(\zeta)$.

And $\mathbb{Q}(\sqrt[3]{2})(\zeta)$ is described as follows:

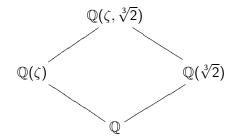
$$\mathbb{Q}(\sqrt[3]{2})(\zeta) = \{ \mathsf{a} + b\zeta \mid \mathsf{a}, b \in \mathbb{Q}(\sqrt[3]{2}) \}$$

i.e. $a = a_0 + a_1\sqrt[3]{2} + a_1\sqrt[3]{2}^2$ and $b = b_0 + b_0\sqrt[3]{2} + b_2\sqrt[3]{2}^2$ where $a_i, b_j \in \mathbb{Q}$, i.e.

$$\begin{aligned} \mathbf{a} + b\zeta &= (\mathbf{a}_0 + \mathbf{a}_1 \sqrt[3]{2} + \mathbf{a}_1 \sqrt[3]{2}^2) + (b_0 + b_0 \sqrt[3]{2} + b_2 \sqrt[3]{2}^2)\zeta \\ &= \mathbf{a}_0 + \mathbf{a}_1 \sqrt[3]{2} + \mathbf{a}_1 \sqrt[3]{2}^2 + b_0 \zeta + b_0 \sqrt[3]{2} \zeta + b_2 \zeta \sqrt[3]{2}^2 \end{aligned}$$

which is exactly what a typical element of $\mathbb{Q}(\zeta, \sqrt[3]{2})$ looks like, i.e. $\mathbb{Q}(\sqrt[3]{2})(\zeta) = \mathbb{Q}(\zeta, \sqrt[3]{2})$, and we arrive at this by first extending \mathbb{Q} to get $\mathbb{Q}(\sqrt[3]{2})$ and then extend $\mathbb{Q}(\sqrt[3]{2})$ to get $\mathbb{Q}(\sqrt[3]{2})(\zeta)$.

We also note, that $\mathbb{Q}(\zeta, \sqrt[3]{2})$ is equally $\mathbb{Q}(\zeta)(\sqrt[3]{2})$, namely extend \mathbb{Q} by ζ and then extend $\mathbb{Q}(\zeta)$ to get $\mathbb{Q}(\zeta)(\sqrt[3]{2})$.



We saw earlier that $\mathbb{Q}(\sqrt[3]{2})$ consists of expressions of the form $a + b\sqrt[3]{2} + c\sqrt[3]{2}^2$ where $a, b, c \in \mathbb{Q}$ since $\sqrt[3]{2}^3 = 2$ so that all higher powers of $\sqrt[3]{2}$ can be expressed as linear combinations of $1, \sqrt[3]{2}, \sqrt[3]{2}^2$.

This is precisely due to the fact that $\sqrt[3]{2}$ is a root of $x^3 - 2$, and we also saw that $\mathbb{Q}(\sqrt[3]{2})$ is isomorphic to $\mathbb{Q}[x]/\langle x^3 - 2 \rangle$.

If we let $I = \langle x^3 - 2 \rangle$ we note that $x^3 - 2 + I = 0 + I$, namely that $x^3 + I = 2 + I$ and that the distinct cosets of I in $\mathbb{Q}[x]/I$ are of the form $a + bx + cx^2 + I$, and so one makes the correspondence

$$a + bx + cx^2 + I \leftrightarrow a + b\sqrt[3]{2} + c\sqrt[3]{2}^2$$

So in general, we have the following

Theorem

Let F be a field and let $p(x) \in F[x]$ be irreducible over F. If a is a root of p(x) in some extension field E of F then

 $F(a) \cong F[x]/\langle p(x) \rangle$

where, if deg(p(x)) = n then every element of F(a) is of the form $c_0 + c_1a + \cdots + c_{n-1}a^{n-1}$ where $c_0, \ldots, c_{n-1} \in F$.

The proof of this is basically from looking at $F[x]/\langle p(x) \rangle$ and realizing that the distinct cosets are of the form $c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$.

We also have this basic fact, which we saw exemplified in the $x^3 - 2$ case.

Corollary

Let F be a field and let $p(x) \in F[x]$ be irreducible. If a is a root of p(x) in some extension field E of F and if b is a root of p(x) in some (other) extension field E' of F then $F(a) \cong F(b)$.

Proof.

$$F(a) \cong F[x]/\langle p(x) \rangle$$
 and $F(b) \cong F[x]/\langle p(x) \rangle$.

We can actually give the isomorphism directly, namely let $\phi : F(a) \to F(b)$ be given by $\phi(c_0 + c_1a + \cdots + c_{n-1}a^{n-1}) = c_0 + c_1b + \cdots + c_{n-1}b^{n-1}$ which derives from simply defining $\phi(a) = b$ and $\phi(c) = c$ for $c \in F$.

We should point out that for $\phi : F(a) \to F(b)$ one has that $\phi|_F = id$, the identity, which is not insignificant.

Another consequence of this is that if p(x) is irreducible in F[x] and a is a root of p(x) in some extension field of E of F then F(a) consists of all F-linear combinations of $\{1, a, a^2, \ldots, a^{n-1}\}$ where n = deg(p(x)) which means that F(a) is not just a field, but also a F-vector space, and , as a vector space, $dim_F(F(a)) = n$.

The other important corollary is this.

Corollary

Let F be a field and let $p(x) \in F[x]$ be irreducible, then any two splitting fields of p(x) over F are isomorphic.