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Corollary

Let E be an extension field of F then the set of all elements of E which

are algebraic over F is a subfield of E which we call the algebraic closure

of F in E.

Of particular interest in number theory is the case where F = Q and
E = C and we have

Q̄ = {α ∈ C | α is algebraic over Q}

which contains the roots of all polynomials in Q[x ] due to the following
fact.
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The Fundamental Theorem of Algebra

Every polynomial p(x) ∈ C[x ] has roots in C.

That is, all polynomials in C[x ] are reducible.

i.e. C is its own algebraic closure

What’s kind of ironic about this theorem is that it is not proved using
algebra!

i.e. Most proofs are analytic/topological in nature.

(If you’ve had some complex analysis, this is a consequence of Liouville’s
Theorem.)
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Galois Theory

The key point of Galois theory is to understand the theory of field
extensions via group theory, in particular via groups of field
automorphisms.

We shall give the definition of these presently, but the power of this
analysis is that can address questions of the solvability of equations in
terms of a group which can, basically, be assigned to the equation, and
whose properties correlate with the solvability of the equation.

Moreover, these groups reveal fundamental properties of the field
extensions in and of themselves.
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Before considering fields, let’s observe some basic facts about
homomorphisms and isomorphisms.

Proposition

If R ,S ,T are rings and φ : R → S is a ring homomorphism, and

ψ : S → T is a ring homomorphism, then ψ ◦ φ : R → T given

ψ ◦ φ(r) = ψ(φ(r)) is a ring homomorphism.

Moreover, if φ and ψ are isomorphisms, then so is ψ ◦ φ.

PROOF (sketch) We note that
ψ(φ(r1 + r2)) = ψ(φ(r1) + φ(r2)) = ψ(φ(r1)) + ψ(φ(r2)) since φ and ψ are
(individually) homomorphisms.
The same argument works for ψ(φ(r1 · r2)).

Lastly, we recall the (basic) fact that the composition of two bijections is a
bijection.

Also, if φ : R → R is an isomorphism of R with itself, we call φ an
automorphism.
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The lead-in to this analysis is the contrast between extensions like

Q(
√
2)/Q

where the adjunction of one of the roots
√
2 yields a field which contains

both (i.e. all) roots of x2 − 2 ∈ Q[x ], whereas in contrast, the field

Q(
3
√
2)

contains only one of the roots of x3 − 2 ∈ Q[x ], i.e. one is the splitting
field, the other is not.
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If φ : Q(
√
2) → Q(

√
2) is an isomorphism (of rings/fields) then one must

have that φ(1) = 1 since φ is one-to-one and onto its image, which is
Q(

√
2).

But this also means that φ(n) = n for any n ∈ Z and therefore, for any
r = m

n
∈ Q, φ(r) = r .
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So that this implies is that if φ : Q(
√
2) → Q(

√
2) is an isomorphism, then

φ(a + b
√
2) = φ(a) + φ(b

√
2) = φ(a) + φ(b)φ(

√
2) = a + bφ(

√
2)

and so φ is determined by φ(
√
2).

The possibilities for φ(
√
2) are keyed to the equation

√
2 satisfies, in

particular φ((
√
2)2) = (φ(

√
2))2 which means (φ(

√
2))2 = 2 so

φ(
√
2) = ±

√
2 are the only possibilities.

As such we write Aut(Q(
√
2)) = {σ, I} namely a set with two functions

(i.e. automorphisms of Q(
√
2)), σ, and I which is determined by

I (
√
2) =

√
2 and so I (a + b

√
2) = a + b

√
2, that is the literal identity

function.

The other is σ : Q(
√
2) → Q(

√
2) determined by σ(

√
2) = −

√
2 and thus

σ(a + b
√
2) = a− b

√
2.
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The set Aut(Q(
√
2)) = {I , σ} is actually a group since bijections can be

composed and one can show that the composition of two homomorphisms
(isomorphisms) is a homomorphism (isomorphism), and indeed we note
that

σ(σ(a + b
√
2)) = σ(a − b

√
2)

= σ(a)− σ(b
√
2)

= σ(a)− σ(b)σ(
√
2)

= a− b(−
√
2) = a + b

√
2

which implies that σ ◦ σ = I , and one may check the obvious facts that
σ ◦ I = σ and I ◦ σ = σ.

This implies that Aut(Q(
√
2)) is a group, of order 2.
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Again, we emphasize that the number of ’choices’ for φ(
√
2) is precisely

determined by the number of distinct root of x2 − 2 in Q(
√
2).

We also observe that |Aut(Q(
√
2))| = [Q(

√
2) : Q]. (More on this later.)
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For a contrasting example, let’s examine Aut(Q( 3
√
2)).

Again, if φ ∈ Aut(Q( 3
√
2)) then φ(r) = r for any r ∈ Q and so for a

typical element a + b
3
√
2 + c

3
√
2
2
we have

φ(a + b
3
√
2 + c

3
√
2
2
) = a + bφ(

3
√
2) + cφ(

3
√
2
2
) = a + bφ(

3
√
2) + cφ(

3
√
2)2

where φ( 3
√
2) must be a(nother) root of x3 − 2 in Q( 3

√
2).
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However, here we run into the key difference, there are no other roots of
x3 − 2 in Q( 3

√
2) and so φ( 3

√
2) = 3

√
2 only, and so φ must be the identity!

As such Aut(Q( 3
√
2)) = {I}, namely it is a trivial group, and certainly

|Aut(Q( 3
√
2))| < [Q( 3

√
2) : Q] which is not an accident.
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Before going further, let’s present some defintions:

Definition

Let E be an extension field of F . An automorphism of E is a ring
isomorphism from E to itself.

The Galois Group of a E over F , denoted Gal(E/F ) is the set of
automorphisms φ : E → E such that for c ∈ F , one has φ(c) = c .

Also, if H ≤ Gal(E/F ) is a subgroup, the fixed field is the set
EH = {x ∈ E | φ(x) = x for all φ ∈ H}.
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So we’ve seen so far that Gal(Q(
√
2)/Q) = {σ, I} and

Gal(Q( 3
√
2)/Q) = {I}.

Important: When F = Q, and E is an extension field of F = Q then every

automorphism φ : E → E will fix the elements of F = Q automatically.
(as we saw in the Q(

√
2) example earlier)

However, for general extensions E/F , one must restrict to those
automorphisms which fix F .

Also, for some extensions E/F the group fixes more than just the elements
of F , e.g. Gal(Q( 3

√
2)/Q) fixes all of Q( 3

√
2).
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We’ll talk about the fixed field of a subgroup H ≤ Gal(E/F ) next time,
but there is one thing to point out.

We call Gal(E/F ) the Galois group, but we also use the adjective ’Galois’
to describe a field extension E/F , but even though we can compute a
Galois group Gal(E/F ), not all extensions are Galois extensions.

In particular, we will insist on having |Gal(E/F )| = [E : F ], as compared
to those cases where |Gal(E/F )| < [E : F ], as we saw in the contrast
between Q( 3

√
2)/Q as compared to Gal(Q(

√
2)/Q.
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And the actual definition we are thinking of, which actually points to an
extension being termed ’Galois’, is one we saw already, namely

Definition

An extension E/F is a normal extension if E is a separable splitting field
of some polynomial in F [x ].

And it is exactly this condition is which distinguishes Q(
√
2)/Q from

Q( 3
√
2)/Q, and in particular distinguishes Gal(Q(

√
2)/Q) from

Gal(Q( 3
√
2)/Q).
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