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Subgroups and Subfields

Last time, we saw the correspondence

{subgroups of G} Fix→ {subfields of E that contain F}

and asked whether there is a correspondence in the other direction and if
the map Fix is injective/surjective/bijective.

Let’s revisit the Q(
√
3,
√
5) example to explore these questions.
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For the intermediate field Q ⊆ Q(
√
3) ⊆ Q(

√
3,
√
5) we can consider

Gal(Q(
√
3,
√
5)/Q(

√
3)).

A typical element is of the form

x = a + b
√
3 + c

√
5 + d

√
15

and for σ ∈ Gal(Q(
√
3,
√
5)/Q) it must fix a, b, c , d .

But if σ ∈ Gal(Q(
√
3,
√
5)/Q(

√
3)) then it must fix

√
3 obviously, and

since it’s an automorphism of Gal(Q(
√
3,
√
5)) it must be one of the

elements {I , σ3, σ5, σ5 ◦ σ3}.

And we know that σ3(
√
3) 6=

√
3, and (σ5 ◦ σ3)(

√
3) 6=

√
3 which leaves I

and σ5 which both do fix
√
3.

So we can equate Gal(Q(
√
3,
√
5)/Q(

√
3)) = 〈σ5〉 = H5.
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And in general we can compute Gal(Q(
√
5,
√
3)/K ) for any field K where

Q ⊆ K ⊆ Q(
√
5,
√
3), and each is naturally a subgroup of

Gal(Q(
√
5,
√
3)/Q) which we can identify.

Gal(Q(
√
5,
√
3)/Q(

√
3)) = {I , σ5} = H5

Gal(Q(
√
5,
√
3)/Q(

√
5)) = {I , σ3} = H3

Gal(Q(
√
5,
√
3)/Q(

√
15)) = {I , σ3 ◦ σ5} = H15

Gal(Q(
√
5,
√
3)/Q(

√
5,
√
3)) = {I}
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So now we have a correspondence going in the other direction:

{subfields of E that contain F} → {subgroups of G}
K 7→ Gal(E/K )

and so the natural question here too is whether this correspondence is
one-to-one.

(i.e. Can Gal(E/K1) = Gal(E/K2) for intermediate fields K1 6= K2.)
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The possibility that H 7→ Fix(H) = EH and K 7→ Gal(E/K ) being
one-to-one is strongly suggested by the following ’bonus’ observation we
can make.

Specifically, for E = Q(
√
5,
√
3), and for each H ≤ G = Gal(E/Q) we

have
Gal(E/EH) = H

which can be verified directly since, for example H3 = {I , σ3} and
EH3

= Q(
√
5) and Gal(E/Q(

√
5) is exactly H3 = {I , σ3}.

This looks ’circular’ but that’s exactly the point, namely that
H 7→ EH 7→ Gal(E/EH) = H!

Indeed, the ’reverse’ composition works too, since for K = Q(
√
5) we have

H = Gal(E/K ) = {I , σ3}, but EH3
= K , i.e. EGal(E/K) = K .

More on this soon...
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A non-abelian Galois Group

We previously computed Gal(
√
5,
√
3)/Q) and found that it was

isomorphic to the abelian group Z2 × Z2.

In contrast we consider a Galois group which we shall see is non-abelian.

The field extension we are interested in is E = Q( 3
√
2, ζ) which is the

splitting field of x3 − 2 ∈ Q[x ].

The group structure of G = Gal(E/Q) is quite different, which will be
apparent especially when we look at fixed fields later one.
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For E = Q( 3
√
2, ζ) and F = Q an automorphism φ ∈ Gal(E/F ) is again

characterized by the fact that ’roots go to roots’.

We need to work with the basis of E as an F -vector space (again F = Q)
namely

B = {1, 3
√
2,

3
√
2
2
, ζ, ζ

3
√
2, ζ

3
√
2
2}

and [E : F ] = 6.
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Now, since 3
√
2 ∈ B which is a root of x3 − 2 then φ( 3

√
2) must also be a

root of x3 − 2 in E , and since E is the splitting field of x3 − 2, it actually
contains the other roots of x3 − 2.

So in particular φ( 3
√
2) ∈ { 3

√
2, ζ 3

√
2, ζ2 3

√
2}.

Moreover, we note that φ( 3
√
2) determines φ( 3

√
2
2
) by the homomorphism

property in that φ( 3
√
2
2
) = φ( 3

√
2)2, and of course, φ(1) = 1 since 1 ∈ F .

Timothy Kohl (Boston University) MA542 Lecture April 2, 2025 10 / 27



The other basis elements to account for are φ(ζ), φ(ζ 3
√
2), and φ(ζ 3

√
2
2
).

Since φ(ζ 3
√
2) = φ(ζ)φ( 3

√
2) and φ(ζ 3

√
2
2
) = φ(ζ)φ( 3

√
2
2
) then we need to

determine φ(ζ).

Since ζ is a root of Φ(x) = x2 + x + 1 then φ(ζ) is also a root of
x2 + x + 1, so φ(ζ) = {ζ, ζ2}.

So qualitatively, one has 3 choices for φ( 3
√
2) and 2 choices for φ(ζ), and

this determines φ of every basis element in

B = {1, 3
√
2,

3
√
2
2
, ζ, ζ

3
√
2, ζ

3
√
2
2}

so 2 · 3 automorphisms overall, which we can tabulate.
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φ( 3
√
2) = 3

√
2 φ(ζ) = ζ (i.e. the identity)

φ( 3
√
2) = ζ 3

√
2 φ(ζ) = ζ

φ( 3
√
2) = ζ2 3

√
2 φ(ζ) = ζ

φ( 3
√
2) = 3

√
2 φ(ζ) = ζ2

φ( 3
√
2) = ζ 3

√
2 φ(ζ) = ζ2

φ( 3
√
2) = ζ2 3

√
2 φ(ζ) = ζ2

We will label some of these in a way which look a bit arbitrary, but will
ultimately make it easier to understand the group structure of
G = Gal(E/F ).
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Let’s define x to be the automorphism so that x( 3
√
2) = ζ 3

√
2 and

x(ζ) = ζ.

Observe that

(x ◦ x)( 3
√
2) = x(ζ

3
√
2) = x(ζ)x(

3
√
2) = ζ(ζ

3
√
2 = ζ2

3
√
2)

and (x ◦ x)(ζ) = x(ζ) = ζ.

i.e. x2( 3
√
2) = ζ2 3

√
2 and x2(ζ) = ζ.

If we now consider x3 = (x2 ◦ x) then

x3(ζ) = ζ

and

x3(
3
√
2) = x2(x(

3
√
2)) = x2(ζ

3
√
2) = x2(ζ)x2(

3
√
2) = ζζ2

3
√
2 =

3
√
2

which means x3 = I .
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Another automorphism we focus on we will call ’t’ which we define by
t(ζ) = ζ2 and t( 3

√
2) = 3

√
2.

We note that t2 = (t ◦ t) acts as follows

(t ◦ t)(ζ) = t(t(ζ)) = t(ζ2) = t(ζ)2 = ζ4 = ζ

and similarly
(t ◦ t)( 3

√
2) = t(t(

3
√
2)) = t(

3
√
2) =

3
√
2

so t2 = I .
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We can therefore present the list earlier, in terms of these elements
I , x , x2, t as well as tx = (t ◦ x) and tx2 = (t ◦ x2)

I ( 3
√
2) = 3

√
2 I (ζ) = ζ

x( 3
√
2) = ζ 3

√
2 x(ζ) = ζ

x2( 3
√
2) = ζ2 3

√
2 x2(ζ) = ζ

t( 3
√
2) = 3

√
2 t(ζ) = ζ2

tx( 3
√
2) = ζ 3

√
2 tx(ζ) = ζ2

tx2( 3
√
2) = ζ2 3

√
2 tx2(ζ) = ζ2

so
G = {I , x , x2, t, tx , tx2}

(as a set) but what is its group structure?
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We already saw that |x | = 3 and |t| = 2.

We note also that

xt(
3
√
2) = x(

3
√
2) = ζ

3
√
2

xt(ζ) = x(ζ2) = ζ2

which is exactly the same as tx2.

So xt = tx−1 which, since |t| = 2 (and therefore t = t−1) means that
txt−1 = x−1 and thus tx2t−1 = x−2, that is x2t = tx .
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In particular this demonstrates that G is indeed closed (as it must be) and
that it is clearly a non-abelian group, and since it has six elements, implies
that it is isomorphic to D3, which is, of course, isomorphic to the
symmetric group S3.
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Let’s consider the group table for G .

◦ I x x2 t tx tx2

I I x x2 t tx tx2

x x x2 I tx2 t tx

x2 x2 I x tx tx2 t

t t tx tx2 I x x2

tx tx tx2 t x2 I x

tx2 tx2 t tx x x I

which is, of course, the group table for D3 although when presented
geometrically, ’x ’ corresponds to a 120◦ rotation, ’x2’ a 240◦ rotation etc.

Note also that |t| = |tx | = |tx2| = 2 and |x | = |x2| = 3 and |I | = 1 of
course.
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Appendix: Group Presentations

Let’s consider the ’x ’ and ’t’ notation we used.

In particular we have a so-called ’finite presentation’ of G , in terms of
’generators’ and ’relations’.

For perspective, consider the group defined as follows:

〈x〉 = {x i | i ∈ Z}
= {. . . , x−3, x−2, x−1, 1, x , x2, . . . }

where x i ∗ x j = x i+j and so the identity is 1 = x0.

We see that 〈x〉 ∼= Z in that it’s an infinite cyclic group.
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What if now we impose a ’relation’ that x needs to satisfy? (i.e. an
equation)

〈x | x3 = 1〉
which means that the elements

{. . . , x−4, x−3, x−2, x−1, 1, x , x2, x3, x4, . . . }

are not all distinct anymore since x3 = 1 implies x4 = x , x5 = x2, x6 = 1
etc, and similarly x−1 = x2, x−2 = x etc.

Indeed, 〈x |x3 = 1〉 is finite, and consists of {1, x , x2} where we still say
x i ∗ x j = x i+j but where we superimpose the relation x3 = 1 which implies
that

〈x | x3 = 1〉 ∼= Z3
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More generally, a finite presentation of a group is one given

〈x1, x2, . . . , xn | equations in the xi 〉

namely the set of all possible products of powers of the ’generators’
x1, . . . , xn with the relations imposed on them.

For example,
〈x , y | xy = yx〉

consists of all powers of x and y we can write down, where if one has
x i ∗ x j one simply writes it as x i+j etc.

The one relation here, xy = yx basically says x and y commute with each
other so that, for example

x3y2x5y7 = x3x5y2y7 = x8y9
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which means that, as a set

〈x , y | xy = yx〉 = {x iy j | i , j ∈ Z}

where the multiplication is based on adding exponents, where again we
assume x and y commute, and therefore any powers of x and y commute.
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As such we find that

〈x , y | xy = yx〉 ∼= Z× Z

where x iy j 7→ (i , j).

Note, the condition xy = yx can be written as xyx−1y−1 = 1, namely
[x , y ] = 1 where [x , y ] is the so-called ’commutator’.

A natural question to ask is, what if we don’t impose the xy = yx relation?
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If we have G = 〈x , y〉 then literally we have the collection of all words we
can write involving powers of x and y where the only rule that holds is
that two powers of the same symbol next to each other are combined by
adding their exponents.

i.e. (x3y5x−3)(x5y3) = x3y5x2y3

This is an example of what’s known as a ’free group’ and, with two or
more generators, it’s a vastly more complicated object, and not just
because it’s non-abelian or that it’s infinite.

Note, however, that by imposing relations, we frequently end up with finite
groups, if not necessariy abelian, which is where our Galois group example
comes in.
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Recall that our Galois group for Q( 3
√
2, ζ)/Q is

G = {1, x , x2, t, tx , tx2}

where |x | = 3 and |t| = 1 and where, for example xt = tx2 and x2t = tx .

This is equivalent to the presentation

〈x , t | x3 = 1, t2 = 1, xt = tx−1〉

which gives us enough information to show that this groups has six
elements, is non-abelian (evident from the relation xt = tx−1) and we can
show therefore that it is isomorphic to D3.
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What’s kind of nice about this, is that it generalizes quite easily.

For n ≥ 3 one can show that

〈x , t | xn = 1, t2 = 1, xt = tx−1〉

consists of the elements {1, x , . . . , xn−1, t, tx , . . . , txn−1} and is
isomorphic to Dn, and all one does is change the ’n’ to change the flavor
of dihedral group one gets!
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One thing kind of interesting that comes from group presentations is
determining whether the resulting group is infinite, finite, or even
(non-obviously) trivial.

For example,
〈x , y | x3 = 1, y2 = 1, y3 = x2〉

is actually the trivial group (in disguise!).

Why? Well, since y3 = x2 and y2 = 1 this means y = x2, and so
y2 = (x2)2 = x4 = x since x3 = 1.

But y2 = 1 so x = 1, and so y = x2 = 12 = 1 and so y = 1, thus all
powers of x and y ’collapse’ down to the identity!
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