MA542 Lecture

Timothy Kohl

Boston University

April 4, 2025

 D_3 has a much richer subgroup structure than say $\mathbb{Z}_2 \times \mathbb{Z}_2$ and there are some definite contrasts between that case and this one.

Consider first $H = \langle x \rangle = \{1, x, x^2\}$ and $H' = \langle t \rangle = \{1, t\}$.

As $x(\sqrt[3]{2}) = \zeta\sqrt[3]{2}$ but $x(\zeta) = \zeta$ and similarly $t(\sqrt[3]{2}) = \sqrt[3]{2}$ while $t(\zeta) = \zeta^2$ one can deduce that

$$E_H = \mathbb{Q}(\zeta)$$
 and $E_{H'} = \mathbb{Q}(\sqrt[3]{2}).$

We also note that for $E = \mathbb{Q}(\sqrt[3]{2}, \zeta)$ and $E_H = \mathbb{Q}(\zeta)$ that $\{1, \sqrt[3]{2}, \sqrt[3]{2}^2\}$ is a $\mathbb{Q}(\zeta)$ -basis for E/E_H since

$$a + b\sqrt[3]{2} + c\sqrt[3]{2}^{2} + d\zeta + e\zeta\sqrt[3]{2} + f\zeta\sqrt[3]{2}^{2} = (a + d\zeta) + (b + e\zeta)\sqrt[3]{2} + (c + f\zeta)\sqrt[3]{2}^{2}$$

since

$$\mathbb{Q}(\sqrt[3]{2},\zeta) = \mathbb{Q}(\zeta,\sqrt[3]{2}) = \mathbb{Q}(\zeta)(\sqrt[3]{2}) = \{x + y\sqrt[3]{2} + z\sqrt[3]{2}^2 \mid x,y,z \in \mathbb{Q}(\zeta)\}$$

As such

${\it Gal}(\mathbb{Q}(\sqrt[3]{2},\zeta)/\mathbb{Q}(\zeta))\leq {\it Gal}(\mathbb{Q}(\sqrt[3]{2},\zeta)/\mathbb{Q})$

and any element in $Gal(\mathbb{Q}(\sqrt[3]{2},\zeta)/\mathbb{Q}(\zeta))$ is an automorphism that fixes ζ and therefore the set of all these is

$$\{I, x, x^2\}$$

which is exactly H.

Thus $Gal(E/E_H) = H$ that is, the Galois group of E over the fixed field of $H \leq Gal(E/F)$ is H itself.

Moreover $[E : E_H] = |H|$.

Similarly for $H' = \{1, t\}$ we have $E_{H'} = \mathbb{Q}(\sqrt[3]{2})$ if we look at $E/E_{H'}$ we have $\mathbb{Q}(\sqrt[3]{2}, \zeta)/\mathbb{Q}(\sqrt[3]{2})$ which has a $\mathbb{Q}(\sqrt[3]{2})$ basis $\{1, \zeta\}$ since

$$a + b\sqrt[3]{2} + c\sqrt[3]{2}^{2} + d\zeta + e\zeta\sqrt[3]{2} + f\zeta\sqrt[3]{2}^{2} = (a + b\sqrt[3]{2} + c\sqrt[3]{2}^{2}) + (d + e\sqrt[3]{2} + f\sqrt[3]{2}^{2})\zeta$$

since $\mathbb{Q}(\sqrt[3]{2},\zeta) = \mathbb{Q}(\sqrt[3]{2})(\zeta) = \{p + q\zeta \mid p, q \in \mathbb{Q}(\sqrt[3]{2})\}.$

As such

$\textit{Gal}(\mathbb{Q}(\sqrt[3]{2},\zeta)/\mathbb{Q}(\sqrt[3]{2})) \leq \textit{Gal}(\mathbb{Q}(\sqrt[3]{2},\zeta)/\mathbb{Q})$

and any element in $Gal(\mathbb{Q}(\sqrt[3]{2},\zeta)/\mathbb{Q}(\sqrt[3]{2}))$ is an automorphism that fixes $\sqrt[3]{2}$ and therefore the set of all these is

 $\{I,t\}$

which is exactly H'.

Thus $Gal(E/E_{H'}) = H'$ that is, the Galois group of E over the fixed field of $H' \leq Gal(E/F)$ is H' itself.

Moreover $[E : E_{H'}] = |H'|$.

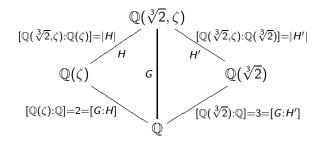
Note also that

$$[G:H] = \frac{|G|}{|H|} = 2 = [E_H:F] = [\mathbb{Q}(\zeta):\mathbb{Q}]$$

and

$$[G:H'] = \frac{|G|}{|H'|} = 3 = [E_{H'}:F] = [\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]$$

which is not an accident, but actually an essential feature we wish to highlight.



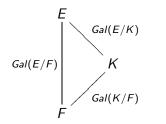
So what about groups associated to the extensions $\mathbb{Q}(\zeta)/\mathbb{Q}$ and $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ given the information about the subgroup indices and degrees of these extensions in the diagram?

In general, for *E* a splitting field over *F*, with Galois group Gal(E/F) we have, for an intermediate field $F \subseteq K \subseteq E$ that $Gal(E/K) \leq Gal(E/F)$.

But what about Gal(K/F)?

More importantly, is it even defined?

And if it is, is it a subgroup of Gal(E/F)? (No it isn't!)



This question has some bearing on the fixed fields of different subgroups of Gal(E/F).

Timothy Kohl (Boston University)

Let's consider other subgroups.

$$H'' = \langle tx \rangle = \{I, tx\}$$
 which implies $E_{H''} = \mathbb{Q}(\zeta\sqrt[3]{2})$

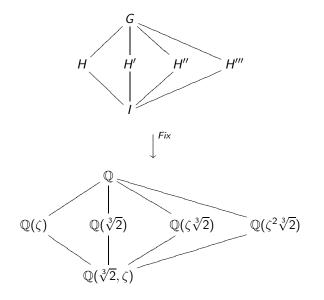
$$H''' = \langle tx^2 \rangle = \{I, tx^2\}$$
 which implies $E_{H'''} = \mathbb{Q}(\zeta^2 \sqrt[3]{2})$

and we observe that here too:

$$\begin{split} & [E:E_{H''}] = |H''| \\ & [E:E_{H'''}] = |H'''| \\ & [G:H''] = 3 = [E_{H''}:F] = [\mathbb{Q}(\zeta\sqrt[3]{2}):\mathbb{Q}] \\ & [G:H'''] = 3 = [E_{H'''}:F] = [\mathbb{Q}(\zeta^2\sqrt[3]{2}):\mathbb{Q}] \end{split}$$

and, of course *I* (the trivial subgroup) where $E_{\{I\}} = \mathbb{Q}(\sqrt[3]{2}, \zeta) = E$ so that $[G : \{I\}] = 6 = [E : F]$.

We start with the 'lattice of subgroups of G' and by taking '*Fix*' of each subgroup yield the (inverted) lattice of subfields of $\mathbb{Q}(\sqrt[3]{2}, \zeta)$.



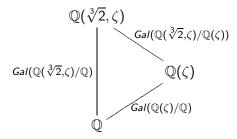
Further Observations:

For $H = \{1, x, x^2\}$ with $E_H = \mathbb{Q}(\zeta)$ we have $Gal(E/E_H)$ as mentioned earlier.

If we consider $Gal(E_H/F) = Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$ we observe that since ζ is a root of $x^2 + x + 1$ (with the other being ζ^2) then $\mathbb{Q}(\zeta)$ is the splitting field for $x^2 + x + 1 \in \mathbb{Q}[x]$.

Moreover, $Gal(\mathbb{Q}(\zeta)/\mathbb{Q}) = \{Id, T\}$ where Id is the identity and $T(\zeta) = \zeta^2$ since the root ζ must get sent to another root (of $x^2 + x + 1$) by an automorphism, and these are all the \mathbb{Q} -automorphisms of $\mathbb{Q}(\zeta)$.

And $|Gal(\mathbb{Q}(\zeta)/\mathbb{Q})| = [\mathbb{Q}(\zeta) : \mathbb{Q}] = 2.$



So how do the groups here relate to each other?

We have that $Gal(\mathbb{Q}(\sqrt[3]{2},\zeta)/\mathbb{Q}(\zeta)) \leq Gal(\mathbb{Q}(\sqrt[3]{2},\zeta)/\mathbb{Q})$ but what about $Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$?

Timothy Kohl (Boston University)

In contrast, for

$$H'=\{1,t\}$$

with $E_{H'} = \mathbb{Q}(\sqrt[3]{2})$ if we look to compute $Gal(E_{H'}/F) = Gal(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})$ we know, from earlier, that

$$Gal(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = \{I\}$$

which is because $\mathbb{Q}(\sqrt[3]{2})$ is not the splitting field of $x^3 - 2 = irr(\sqrt[3]{2}, \mathbb{Q})$, so $[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] > |Gal(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})|$. So what is the distinction between H and H', which makes E_H a splitting field over \mathbb{Q} while $E_{H'}$ is not a splitting field?

The key difference is that

$$H = \{I, x, x^2\} \triangleleft G = Gal(E/F)$$

but $H' = \{I, t\} \not \lhd G$.

In particular, consider $G/H = \{I \cdot H, t \cdot H\}$ and observe that in the coset

$$I \cdot H = \{I, x, x^2\}$$

every element acts trivially on ζ (and therefore trivially as a \mathbb{Q} -automorphism of $\mathbb{Q}(\zeta)$) and in the coset

$$t \cdot H = \{t, tx, tx^2\}$$

we have
$$t(\zeta) = \zeta^2$$
 and $tx(\zeta) = t(\zeta) = \zeta^2$ and $tx^2(\zeta) = t(\zeta) = \zeta^2$.

So every coset element acts as the automorphism $T \in Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$ we saw earlier, which is the non-trivial element of $Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$.

So we can assert that

$$G/H = \{I \cdot H, t \cdot H\} \cong \{Id, T\} = Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$$

via the homomorphism $I \cdot H \mapsto Id$ and $t \cdot H \mapsto T$ which is obviously an isomorphism.

$$H \triangleleft G \rightarrow Gal(E_H/F) \cong Gal(E/F)/Gal(E/E_H)$$

which is a basic fact we shall see is fundamental to 'Galois Theory' as we shall develop in generality later on.