MA542 Lecture

Timothy Kohl

Boston University

April 11, 2025

Consider $G = Gal(\mathbb{Q}(\sqrt[4]{2}, i)/\mathbb{Q})$ which is the splitting field of $x^4 - 2 \in \mathbb{Q}[x]$ since the roots are $i^t \sqrt[4]{2}$ for t = 0, 1, 2, 3.

Claim: $G = \langle x, t | x^4 = 1, t^2 = 1, xt = tx^{-1} \rangle$ where

- $x(\sqrt[4]{2}) = i\sqrt[4]{2}$
- x(i) = i
- $t(\sqrt[4]{2}) = \sqrt[4]{2}$
- t(i) = -i

and x(c) = c and t(c) = c for all $c \in \mathbb{Q}$.

The basis for $\mathbb{Q}(\sqrt[4]{2}, i)/\mathbb{Q}$ is

$$\mathcal{B} = \{1, \sqrt[4]{2}, \sqrt[4]{2}^2, \sqrt[4]{2}^3, i, i\sqrt[4]{2}, i\sqrt[4]{2}^2, i\sqrt[4]{2}^3\}$$

in keeping with fact that $[\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}]=8$.

For an element $\sigma \in G$ the 'roots mapped to roots' requirement implies that

$$\sigma(\sqrt[4]{2}) = \pm \sqrt[4]{2} \text{ or } \pm i \sqrt[4]{2}$$
$$\sigma(i) = \pm i \text{ since } \pm i \text{ are the roots of } x^2 + 1$$

So for
$$x(\sqrt[4]{2}) = i\sqrt[4]{2}$$
 and $x(i) = i$ we have that $x^2(\sqrt[4]{2}) = x(x(\sqrt[4]{2})) = x(i\sqrt[4]{2}) = x(i)x(\sqrt[4]{2}) = i(i\sqrt[4]{2}) = -\sqrt[4]{2}$.

Continuing this way
$$x^3(\sqrt[4]{2}) = x(-\sqrt[4]{2}) = -x(\sqrt[4]{2}) = -(i\sqrt[4]{2}) = -i\sqrt[4]{2}$$
 and similarly $x^4(\sqrt[4]{2}) = x(-i\sqrt[4]{2}) = -x(i)x(\sqrt[4]{2}) = -i(i\sqrt[4]{2}) = \sqrt[4]{2}$.

And x(i) = i implies $x^{k}(i) = i$ for k = 0, 1, 2, 3.

Similarly t(i) = -i and $t(\sqrt[4]{2}) = \sqrt[4]{2}$ implies that $t^2(i) = i$ and $t^2(\sqrt[4]{2}) = \sqrt[4]{2}$ of course.

As such, we deduce that |x| = 4 and |t| = 2.

What one also shows is that $xt = tx^{-1} = tx^3$.

Also, one can show that |t|=2, |tx|=2, $|tx^2|=2$ and $|tx^3|=2$. As such $G=\{1,x,x^2,x^3,t,tx,tx^2,tx^3\}$ and is isomorphic to D_4 where one can identify x with the 90° rotation and t (as well as tx, tx^2 , and tx^3) are all the 'flips' one can perform on a square.

Note, $Z(G)=\langle x^2\rangle$ which is non-trivial because for any even n, $|Z(D_n)|=2$ while for n odd, $|Z(D_n)|=1$. (i.e. the center is given by the 180° rotation)

Also, it is evident G acts transitively on the roots of x^4-2 , namely $\{\pm\sqrt[4]{2},\pm i\sqrt[4]{2}\}$ since,

$x(\sqrt[4]{2}) = i\sqrt[4]{2}$	$x^2(\sqrt[4]{2}) = -\sqrt[4]{2}$	$x^3(\sqrt[4]{2}) = -i\sqrt[4]{2}$
$x(-\sqrt[4]{2}) = -i\sqrt[4]{2}$	$x^2(-\sqrt[4]{2}) = \sqrt[4]{2}$	$x^3(-\sqrt[4]{2}) = i\sqrt[4]{2}$
$x(i\sqrt[4]{2}) = -\sqrt[4]{2}$	$x^2(i\sqrt[4]{2}) = -i\sqrt[4]{2}$	$x^3(i\sqrt[4]{2}) = \sqrt[4]{2}$
$x(-i\sqrt[4]{2}) = \sqrt[4]{2}$	$x^2(-i\sqrt[4]{2}) = i\sqrt[4]{2}$	$x^3(-i\sqrt[4]{2}) = -\sqrt[4]{2}$

Indeed, this shows that the subgroup $\langle x \rangle$ itself acts transitively on the roots, let alone the whole group G.

Now, let's consider the subgroups of G and the corresponding fixed fields.

$$H_{1} = \langle x^{2}, t \rangle = \{1, x^{2}, t, tx^{2}\} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$$

$$H_{2} = \langle x \rangle = \{1, x, x^{2}, x^{3}\} \cong \mathbb{Z}_{4}$$

$$H_{3} = \langle x^{2}, tx \rangle = \{1, x^{2}, tx, tx^{3}\} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$$

$$H_{4} = \langle t \rangle = \{1, t\} \cong \mathbb{Z}_{2}$$

$$H_{5} = \langle tx^{2} \rangle = \{1, tx^{2}\} \cong \mathbb{Z}_{2}$$

$$H_{6} = \langle x^{2} \rangle = \{1, x^{2}\} \cong \mathbb{Z}_{2}$$

$$H_{7} = \langle tx^{3} \rangle = \{1, tx^{3}\} \cong \mathbb{Z}_{2}$$

$$H_{8} = \langle tx \rangle = \{1, tx\} \cong \mathbb{Z}_{2}$$

And, of course, we have G and $\{1\}$.

We can compute the corresponding fixed fields.

$$H_{1} = \langle x^{2}, t \rangle = \{1, x^{2}, t, tx^{2}\}$$

$$\downarrow$$

$$x^{2}(a + b\sqrt[4]{2} + c\sqrt[4]{2}^{2} + d\sqrt[4]{2}^{3} + ei + fi\sqrt[4]{2} + gi\sqrt[4]{2}^{2} + hi\sqrt[4]{2}^{3})$$

$$= \boxed{a} - b\sqrt[4]{2} + \boxed{c\sqrt[4]{2}} - d\sqrt[4]{2}^{3} + \boxed{ei} - fi\sqrt[4]{2} + \boxed{gi\sqrt[4]{2}} - hi\sqrt[4]{2}^{3}$$

$$t(a + b\sqrt[4]{2} + c\sqrt[4]{2}^{2} + d\sqrt[4]{2}^{3} + ei + fi\sqrt[4]{2} + gi\sqrt[4]{2}^{2} + hi\sqrt[4]{2}^{3})$$

$$= \boxed{a + b\sqrt[4]{2} + c\sqrt[4]{2}^{2} + d\sqrt[4]{2}^{3}} - ei - fi\sqrt[4]{2} - gi\sqrt[4]{2}^{2} - hi\sqrt[4]{2}^{3}$$

$$\downarrow$$

$$b = 0, \ d = 0, \ e = 0, \ f = 0 \ g = 0, \ h = 0$$

$$\downarrow$$

$$E_{H_{1}} = \mathbb{Q}(\sqrt[4]{2}^{2}) = \mathbb{Q}(\sqrt{2})$$

Note that $[E_{H_1}: F] = 2 = [G: H_1]$

$$H_{2} = \langle x \rangle$$

$$\downarrow$$

$$x(a + b\sqrt[4]{2} + c\sqrt[4]{2}^{2} + d\sqrt[4]{2}^{3} + ei + fi\sqrt[4]{2} + gi\sqrt[4]{2}^{2} + hi\sqrt[4]{2}^{3})$$

$$= \boxed{a} + bi\sqrt[4]{2} - c\sqrt[4]{2}^{2} - di\sqrt[4]{2}^{3} + \boxed{ei} - f\sqrt[4]{2} - gi\sqrt[4]{2}^{2} + h\sqrt[4]{2}^{3}$$

$$\downarrow$$

$$b = 0, c = 0, d = 0, f = 0, g = 0, h = 0,$$

$$\downarrow$$

$$E_{H_{2}} = \mathbb{Q}(i)$$

Note that $[E_{H_2}: F] = 2 = [G: H_2]$

$$H_{3} = \langle x^{2}, tx \rangle = \{1, x^{2}, tx, tx^{3}\}$$

$$\downarrow$$

$$x^{2}(a + b\sqrt[4]{2} + c\sqrt[4]{2}^{2} + d\sqrt[4]{2}^{3} + ei + fi\sqrt[4]{2} + gi\sqrt[4]{2}^{2} + hi\sqrt[4]{2}^{3})$$

$$= \boxed{a} - b\sqrt[4]{2} + \boxed{c\sqrt[4]{2}^{2}} - d\sqrt[4]{2}^{3} + \boxed{ei} - fi\sqrt[4]{2} + \boxed{gi\sqrt[4]{2}^{2}} - hi\sqrt[4]{2}^{3}$$

$$tx(a + b\sqrt[4]{2} + c\sqrt[4]{2}^{2} + d\sqrt[4]{2}^{3} + ei + fi\sqrt[4]{2} + gi\sqrt[4]{2}^{2} + hi\sqrt[4]{2}^{3})$$

$$= \boxed{a} - bi\sqrt[4]{2} - c\sqrt[4]{2}^{2} + di\sqrt[4]{2}^{3} - ei - f\sqrt[4]{2} + \boxed{gi\sqrt[4]{2}^{2}} + h\sqrt[4]{2}^{3}$$

$$\downarrow$$

$$E_{H_{3}} = \mathbb{Q}(i\sqrt[4]{2}^{2}) = \mathbb{Q}(i\sqrt{2})$$

Note that $[E_{H_3}: F] = 2 = [G: H_3]$

$$H_{4} = \langle t \rangle = \{1, t\}$$

$$\downarrow$$

$$t(a + b\sqrt[4]{2} + c\sqrt[4]{2}^{2} + d\sqrt[4]{2}^{3} + ei + fi\sqrt[4]{2} + gi\sqrt[4]{2}^{2} + hi\sqrt[4]{2}^{3})$$

$$= \boxed{a + b\sqrt[4]{2} + c\sqrt[4]{2}^{2} + d\sqrt[4]{2}^{3}} - ei - fi\sqrt[4]{2} - gi\sqrt[4]{2}^{2} - hi\sqrt[4]{2}^{3}}$$

$$\downarrow$$

$$E_{H_{4}} = \mathbb{Q}(\sqrt[4]{2})$$

Note that $[E_{H_4} : F] = 4 = [G : H_4]$

$$H_{5} = \langle tx^{2} \rangle = \{1, tx^{2}\}$$

$$\downarrow$$

$$tx^{2}(a + b\sqrt[4]{2} + c\sqrt[4]{2}^{2} + d\sqrt[4]{2}^{3} + ei + fi\sqrt[4]{2} + gi\sqrt[4]{2}^{2} + hi\sqrt[4]{2}^{3})$$

$$= \boxed{a} - b\sqrt[4]{2} + \boxed{c\sqrt[4]{2}^{2}} - d\sqrt[4]{2}^{3} - ei + \boxed{fi\sqrt[4]{2}} - gi\sqrt[4]{2}^{2} + \boxed{hi\sqrt[4]{2}^{3}}$$

$$\downarrow$$

$$E_{H_{5}} = \mathbb{Q}(i\sqrt[4]{2})$$

Note that $[E_{H_5}: F] = 4 = [G: H_5]$

$$H_{6} = \langle x^{2} \rangle = \{1, x^{2}\}$$

$$\downarrow$$

$$x^{2}(a + b\sqrt[4]{2} + c\sqrt[4]{2}^{2} + d\sqrt[4]{2}^{3} + ei + fi\sqrt[4]{2} + gi\sqrt[4]{2}^{2} + hi\sqrt[4]{2}^{3})$$

$$= \boxed{a} - b\sqrt[4]{2} + \boxed{c\sqrt[4]{2}^{2}} - d\sqrt[4]{2}^{3} + \boxed{ei} - fi\sqrt[4]{2} + \boxed{gi\sqrt[4]{2}^{2}} + hi\sqrt[4]{2}^{3}$$

$$\downarrow$$

$$E_{H_{6}} = \mathbb{Q}(\sqrt{2}, i)$$

Note that $[E_{H_6}: F] = 4 = [G: H_6]$

This fixed field calculation is a bit more subtle.

$$H_{7} = \langle tx^{3} \rangle = \{1, tx^{3}\}$$

$$\downarrow$$

$$tx^{3}(a + b\sqrt[4]{2} + c\sqrt[4]{2}^{2} + d\sqrt[4]{2}^{3} + ei + fi\sqrt[4]{2} + gi\sqrt[4]{2}^{2} + hi\sqrt[4]{2}^{3})$$

$$= a + bi\sqrt[4]{2} - c\sqrt[4]{2}^{2} - di\sqrt[4]{2}^{3} - ei + f\sqrt[4]{2} + gi\sqrt[4]{2}^{2} - h\sqrt[4]{2}^{3}$$

So the question is, what is fixed by tx^3 ? If $v=a+b\sqrt[4]{2}+c\sqrt[4]{2}^2+d\sqrt[4]{2}^3+ei+fi\sqrt[4]{2}+gi\sqrt[4]{2}^2+hi\sqrt[4]{2}^3$ then $v-tx^3(v)$ can be written in terms of the basis:

$$(b-f)\sqrt[4]{2} + (2c)\sqrt[4]{2}^2 + (d+h)\sqrt[4]{2}^3 + (2e)i + (f-b)i\sqrt[4]{2} + (h+d)i\sqrt[4]{2}^3$$

where we note that 'a' and 'g' do not appear.

Timothy Kohl (Boston University)

So we wish to solve

$$v - tx^{3}(v) = (b - f)\sqrt[4]{2} + (2c)\sqrt[4]{2} + (d + h)\sqrt[4]{2}^{3} + (2e)i + (f - b)i\sqrt[4]{2} + (h + d)i\sqrt[4]{2}$$

for b, c, d, e, f, h which make $v - tx^3(v) = 0$, which yields b = f, c = 0, e = 0, d = -h, that is a, g can be anything and so

$$v = a + b\sqrt[4]{2} + d\sqrt[4]{2}^{3} + bi\sqrt[4]{2} + gi\sqrt[4]{2}^{2} - di\sqrt[4]{2}^{3}$$
$$= a + b(\sqrt[4]{2} + i\sqrt[4]{2}) + d(\sqrt[4]{2}^{3} - i\sqrt[4]{2}^{3}) + gi\sqrt[4]{2}^{2}$$

and if we let $q = \sqrt[4]{2} + i\sqrt[4]{2}$ then $q^2 = 2i\sqrt[4]{2}^2$, $q^3 = 2(i\sqrt[4]{2}^3 - \sqrt[4]{2}^3)$, and $q^4 = -8$.

The point is that $E_{H_7} = \mathbb{Q}(\sqrt[4]{2} + i\sqrt[4]{2})$ and $[E_{H_7} : F] = 4 = [G : H_7]$.

$$\begin{split} H_8 &= \langle tx \rangle = \{1, tx\} \cong \mathbb{Z}_2 \\ \downarrow \\ tx(a + b\sqrt[4]{2} + c\sqrt[4]{2}^2 + d\sqrt[4]{2}^3 + ei + fi\sqrt[4]{2} + gi\sqrt[4]{2}^2 + hi\sqrt[4]{2}^3) \\ &= a - bi\sqrt[4]{2} - c\sqrt[4]{2}^2 + di\sqrt[4]{2}^3 - ei - f\sqrt[4]{2} + gi\sqrt[4]{2}^2 + h\sqrt[4]{2}^3 \end{split}$$

So for $v=a+b\sqrt[4]{2}+c\sqrt[4]{2}^2+d\sqrt[4]{2}^3+ei+fi\sqrt[4]{2}+gi\sqrt[4]{2}^2+hi\sqrt[4]{2}^3$, tx(v)=v implies $d=h,\ b=-f,\ c=0,\ e=0,\ and\ a,g$ are arbitrary which means v has the form

$$a + b\sqrt[4]{2} + d\sqrt[4]{2}^{3} - bi\sqrt[4]{2} + gi\sqrt[4]{2}^{2} + di\sqrt[4]{2}^{3}$$

= $a + b(\sqrt[4]{2} - i\sqrt[4]{2}) + d(\sqrt[4]{2}^{3} + i\sqrt[4]{2}^{3}) + gi\sqrt[4]{2}^{2}$

so that $E_{H_8} = \mathbb{Q}(\sqrt[4]{2} - i\sqrt[4]{2})$ and $[E_{H_8} : F] = 4 = [G : H_8]$.

Now, if we pass from subgroups H to fixed fields E_H we again get the 'inverted' subfield lattice for $\mathbb{Q}(\sqrt[4]{2}, i)/\mathbb{Q}$.

Observe that

•
$$H_1 = \langle x^2, t \rangle$$

•
$$H_2 = \langle x \rangle$$

•
$$H_3 = \langle x^2, tx \rangle$$

•
$$H_6 = \langle x^2 \rangle$$

are the only normal subgroups of G, and concordantly the fixed fields

•
$$E_{H_1} = \mathbb{Q}(\sqrt{2})$$

•
$$E_{H_2} = \mathbb{Q}(i)$$

•
$$E_{H_3} = \mathbb{Q}(i\sqrt{2})$$

•
$$E_{H_6} = \mathbb{Q}(i, \sqrt{2})$$

are the only intermediate fields which are splitting fields over $\mathbb Q$ (i.e. Galois extensions of $\mathbb Q$)

In contrast, a non-normal subgroup such as $H_4 = \langle t \rangle$ gives rise to the intermediate field $E_{H_4} = \mathbb{Q}(\sqrt[4]{2})$, which is not a splitting field over \mathbb{Q} .

i.e. It only contains the root $\sqrt[4]{2}$ of $x^4 - 2$ but none of the others.