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For x3 − 2 and x4 − 2 in Q[x ] we got that the Galois groups were

〈x , t | x3 = 1, t2 = 1, xt = tx−1〉 ∼= D3

〈x , t | x4 = 1, t2 = 1, xt = tx−1〉 ∼= D4

but what about xn − 2 for larger n, say n = 5?
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Before we look at the splitting field for x5 − 2 we should take a closer look
at something we have been using without really justifying it.

For example, with Q( 3
√
2, ζ3) we have have used the fact that the basis of

Q(ζ3)/Q is {1, ζ3} and that the basis of Q( 3
√
2)/Q is {1, 3

√
2, 3
√
2
2}, to

infer that the basis of Q( 3
√
2, ζ3)/Q is the ’product’ of these two bases

{1, ζ3} · {1, 3
√
2,

3
√
2
2} = {1, 3

√
2,

3
√
2
2
, ζ3, ζ3

3
√
2, ζ3

3
√
2
2}

The reason we can do this has to do, primarily, with the fact that
Q(ζ3) ∩Q( 3

√
2) = Q.
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This implies that {1, 3
√
2, 3
√
2
2} is a basis of Q( 3

√
2, ζ3)/Q(ζ3), and

symmetrically {1, ζ3} is a basis of Q( 3
√
2, ζ3)/Q( 3

√
2) which we can

diagram:

Q( 3
√
2, ζ3)

{1,ζ3}

ss
ss
ss
ss
ss {1, 3√2, 3

√
2
2}

❏❏
❏❏

❏❏
❏❏

❏❏

Q( 3
√
2)

{1, 3√2, 3
√
2
2} ▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
Q(ζ3)

{1,ζ3}
ss
ss
ss
ss
ss
s

Q

And even more interestingly, this kind of ’parallelism’ has a bearing on the
relationships between the different Galois groups, which we shall explore
soon.
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Another view we can take of Q( 3
√
2, ζ3) is as what we call the

’compositum’ namely Q( 3
√
2)Q(ζ3) which is the subfield of C consisting of

all products of elements from both fields.

Note, one must not confuse this with the direct product of the two fields,
which would not be a field.

In fact, product is not necessarily the best way to think of this, rather we
should view Q( 3

√
2)Q(ζ3) as the smallest subfield of C that contains both

Q( 3
√
2) and Q(ζ3).
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In general, if K and L are fields (both of which are containd in some larger
field, e.g. C) then the compositum LK is the smallest subfield of this
larger field which contains both L and K .

If we let F = L ∩ K and if K and L are finite extensions of F , then a basis
of L/F and one of K/F can be multiplied to yield a basis of the
compositum LK over F .

In a way, this derives from how we proved that [E : K ][K : F ] = [E : F ] for
fields F ⊆ K ⊆ E .
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The importance of the intersection F = L ∩ K is that for such a situation:

LK

⑥⑥
⑥⑥
⑥⑥
⑥⑥

❇❇
❇❇

❇❇
❇❇

L

❆❆
❆❆

❆❆
❆❆

K

⑤⑤
⑤⑤
⑤⑤
⑤⑤

F

we have that [LK : F ] = [L : F ][K : F ] = [LK : K ][K : F ] since F = L∩K .

This is what we term ’linear disjointness’ in that no basis element of L/F
can be written in terms of the basis of K/F and vice versa.
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Linear disjointness has some implications when one considers the Galois
group of a compositum of two fields.

So suppose L/F and K/F are algebraic extensions of F where L ∩ K = F ,
and suppose that say LK/F and L/F are Galois, (and LK/K is Galois
automatically) but K/F was not.

Suppose also that G = Gal(LK/F ), N = Gal(LK/L), D = Gal(LK/K ),
∆ = Gal(L/F ).

LK

N

⑥⑥
⑥⑥
⑥⑥
⑥⑥

D

❇❇
❇❇

❇❇
❇❇

GL

∆ ❆❆
❆❆

❆❆
❆❆

K

⑤⑤
⑤⑤
⑤⑤
⑤⑤

F

and as L/F is Galois, then this implies that N ⊳ G .
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With this setup

LK

N

⑥⑥
⑥⑥
⑥⑥
⑥⑥

D

❇❇
❇❇

❇❇
❇❇

GL

∆ ❆❆
❆❆

❆❆
❆❆

K

⑤⑤
⑤⑤
⑤⑤
⑤⑤

F

we have that D ∼= ∆ which is what is called Natural Irrationality which is
a result due to LaGrange.

The argument one makes to show this is that the action of D on LK fixes
K so that if one restricts D to the elements of L inside LK then one gets
an action of D on L by automorphisms, and this action is identical with
that of ∆.
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LK

N

⑥⑥
⑥⑥
⑥⑥
⑥⑥

D

❇❇
❇❇

❇❇
❇❇

GL

∆ ❆❆
❆❆

❆❆
❆❆

K

⑤⑤
⑤⑤
⑤⑤
⑤⑤

F

Another way to think of the action of D on LK/K as being ’equivalent’ to the action of
∆ on L/F is as follows.

If we have a basis {β1, β2, . . . , βm} for L, viewed as an F -vector space, then every
element of L is a linear combination a1β1 + · · ·+ amβm for a1, . . . , am ∈ F .

However, if we take all K -linear combinations (i.e. the K -span of {β1, . . . , βm}) then
this is then going to give us a field extension of K and this field extension has degree m,
but it is a field extension contained in LK but since [LK : K ] = m then this must
actually equal LK , which means LK is the span of the basis {β1, . . . , βm}.

What this also means is that, again, since the elements of D act on LK and fix K then
they must be acting on the basis elements {βi} but this action agrees with the action of
∆ on the {βi}.

Or, one could start with ∆ acting on L and fixing F and extend this action to LK which
we assume acts trivially on K , i.e. giving us the elements of D.
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We note that N and D are subgroups of G , whereas ∆ is isomorphic to
the quotient and is therefore not necessarily a subgroup of G itself.

Also, since L ∩ K = F then N ∩ D = {1}.

Furthermore, as N ⊳ G and D ≤ G then ND = {nd |n ∈ N, d ∈ D} is a
subgroup of G . Why?
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If N ⊳ G and D ≤ G then ND is a group since, first of all 1 ∈ ND since
1 ∈ N and 1 ∈ D so 1 = 1 · 1 ∈ ND

Next, if n1d1, n2d2 ∈ ND then is n1d1n2d2 ∈ ND?

Well, note that d1n2 ∈ d1N (the left coset) and by normality d1N = Nd1
so therefore d1n2 = n3d1 for some n3 ∈ N, so

n1d1n2d2 = n1(d1n2)d2 = n1n3d1d2 ∈ ND

so we have closure.

Moreover (nd)−1 = d−1n−1 ∈ d−1N and since d−1N = Nd−1 then
d−1n−1 = n′−1d−1

1 ∈ ND so ND is closed under inverses and therefore a
group.

We call this the ’internal semi-direct product’ of N and D.
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So now, with
LK

N

⑥⑥
⑥⑥
⑥⑥
⑥⑥

D

❇❇
❇❇

❇❇
❇❇

GL

∆ ❆❆
❆❆

❆❆
❆❆

K

⑤⑤
⑤⑤
⑤⑤
⑤⑤

F

with L ∩ K = F then, as we mentioned above, N ∩ D = {1} and so

|ND| = |N| · |D|
|N ∩ D| = |N| · |D|

where now, [LK : K ] = |D|, [LK : L] = |N| and
|G | = [LK : F ] = [L : F ][K : F ] = [LK : K ][LK : L] = |N| · |D| which
means

G = ND

namely G is the internal semi-direct product of N and D.
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However, we should emphatically point out that it’s not necessarily the
case that ND ∼= N × D.

Since G = ND, where N ⊳ G then this means that gNg−1 = N for all
g ∈ G .

As such when multiplying (n1d1)(n2d2) we can write

n1d1n2d2 = n1d1n2d
−1
1 d1d2 = n1(d1n2d

−1
1 )d1d2

where now, since N ⊳ G then d1n2d
−1
1 ∈ N so the product is in ND again.
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The product in ND being induced by the ’action’ of D on N is an example
of a group automorphism.

Definition

For a group G , a bijective homomorphism α : G → G is called an
automorphism of G .

And, like a Galois group, the composition of group automorphisms is a
group automorphism so we have:

Definition

For a group G , the set of all automorphisms of G is itself a group, and is
denoted Aut(G ).
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For example, if G = Zn then Aut(G ) = U(n) since if ψ : Zn → Zn is an
automorphism then it must be one-to-one, and since 1 generates Zn then
ψ is determined by ψ(1), since then ψ(k) = ψ(k · 1) = kψ(1).

If now ψ(1) = r then we must have |r | = |1| = n which means r ∈ U(n),
i.e. gcd(r , n) = 1.

If we denote by ψr the automorphism for which ψr (1) = r then
ψr1(ψr2(1)) = ψr1(r2) = r1 · r2, thus Aut(Zn) ∼= U(n) where

U(n) ∋ r 7→ ψr ∈ Aut(Zn)

.
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Automorphisms can be used to define a way of combining groups to get
new groups.

Definition

If N and D are groups, and f : D → Aut(N) is a homomorphism, then the
(external) semi-direct product N ⋊f D is a group, where the elements
consist of ordered pairs (n, d) (i.e. N × D) but where the multiplication is
defined as follows:

(n1, d1) ∗ (n2, d2) = (n1f (d1)(n2), d1d2)

where the identity is (eN , eD) and (n, d)−1 = (f (d−1)(n−1), d−1)

One can check (Exercise!) that N ⋊f D is associative.
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And we note that although N ⋊f D is, as a set, the direct product, the
group structure is more complicated.

However, if f : D → Aut(N) is trivial, namely f (d) = IN for all d ∈ D then

(n1, d1) ∗ (n2, d2) = (n1f (d1)(n2), d1d2) = (n1n2, d1d2)

so that the group structure is that of the direct product, so the direct
product is just a special case of semi-direct product.

So what does this have to do with Galois groups, and our example where
G = ND?

Timothy Kohl (Boston University) MA542 Lecture April 14, 2025 18 / 18


