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For x3 — 2 and x* — 2 in Q[x] we got that the Galois groups were

I

(X, t | x>=1,t2=1,xt = tx7 1)
(x,t | x*=1,t2=1,xt = tx 1)

D3
Dy

I

but what about x" — 2 for larger n, say n =57
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Before we look at the splitting field for x> — 2 we should take a closer look
at something we have been using without really justifying it.

For example, with Q(\"/E, (3) we have have used the fact that the basis of

Q(&3)/Q is {1,¢3} and that the basis of Q(v/2)/Q is {1, v/2, \3/52} to
infer that the basis of Q(+/2,(3)/Q is the 'product’ of these two bases

(1,G} {1, V2,¥2°) = {1,V2,¥2", 3, V2, 3¥/2°}

The reason we can do this has to do, primarily, with the fact that

Q) NQ(V2) = Q.
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This implies that {1, v/2, \752} is a basis of Q(v/2,¢3)/Q((3), and
symmetrically {1, (3} is a basis of Q(v/2, (3)/Q(+/2) which we can

diagram:
Q(v2,¢3)
{165} (1.92.92")

Q(¢3)

(1,372,327 A

And even more interestingly, this kind of 'parallelism’ has a bearing on the
relationships between the different Galois groups, which we shall explore
soon.
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Another view we can take of Q(v/2,(3) is as what we call the
'compositum’ namely Q(v/2)Q((3) which is the subfield of C consisting of
all products of elements from both fields.

Note, one must not confuse this with the direct product of the two fields,
which would not be a field.

In fact, product is not necessarily the best way to think of this, rather we
should view Q(v/2)Q((3) as the smallest subfield of C that contains both
Q(V/2) and Q(¢3).
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In general, if K and L are fields (both of which are containd in some larger
field, e.g. C) then the compositum LK is the smallest subfield of this
larger field which contains both L and K.

If we let F =LNK and if K and L are finite extensions of F, then a basis
of L/F and one of K/F can be multiplied to yield a basis of the
compositum LK over F.

In a way, this derives from how we proved that [E : K][K : F] = [E : F] for
fields FC K C E.
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The importance of the intersection F = L N K is that for such a situation:

LK
L/ \K
N
we have that [LK : F] = [L: F][K : F] = [LK : K][K : F] since F = LN K.

This is what we term 'linear disjointness’ in that no basis element of L/F
can be written in terms of the basis of K/F and vice versa.
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Linear disjointness has some implications when one considers the Galois
group of a compositum of two fields.

So suppose L/F and K/F are algebraic extensions of F where LN K = F,
and suppose that say LK/F and L/F are Galois, (and LK /K is Galois
automatically) but K/F was not.

Suppose also that G = Gal(LK/F), N = Gal(LK/L), D = Gal(LK/K),
A = Gal(L/F).
LK

MY
N

and as L/F is Galois, then this implies that N < G.
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With this setup

we have that D = A which is what is called Natural Irrationality which is
a result due to LaGrange.

The argument one makes to show this is that the action of D on LK fixes
K so that if one restricts D to the elements of L inside LK then one gets
an action of D on L by automorphisms, and this action is identical with
that of A.
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N
L G K
k /
F
Another way to think of the action of D on LK/K as being 'equivalent’ to the action of
A on L/F is as follows.

If we have a basis {81, 82, ...,8m} for L, viewed as an F-vector space, then every
element of L is a linear combination a131 + -+ - + amfBm for a1,...,am € F.

However, if we take all K-linear combinations (i.e. the K-span of {f1,...,0m}) then
this is then going to give us a field extension of K and this field extension has degree m,
but it is a field extension contained in LK but since [LK : K] = m then this must
actually equal LK, which means LK is the span of the basis {f1,...,8m}-

What this also means is that, again, since the elements of D act on LK and fix K then
they must be acting on the basis elements {3;} but this action agrees with the action of
A on the {f;}.

Or, one could start with A acting on L and fixing F and extend this action to LK which
we assume acts trivially on K, i.e. giving us the elements of D.
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We note that N and D are subgroups of G, whereas A is isomorphic to
the quotient and is therefore not necessarily a subgroup of G itself.

Also, since LN K = F then NN D = {1}.

Furthermore, as N< G and D < G then ND = {nd |n € N,d € D} is a
subgroup of G. Why?
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If N< G and D < G then ND is a group since, first of all 1 € ND since
leNandleDsol=1-1€ ND

Next, if nidy, nod> € ND then is nidinyd> € ND?

Well, note that diny € di N (the left coset) and by normality di N = Ndj
so therefore diny = n3d; for some n3 € N, so
ndinods = nl(dlnz)dz = nyn3didr € ND
so we have closure.
Moreover (nd)™! = d=*n=! € d~IN and since d "IN = Nd~! then

d-1n71= n’_ldl_1 € ND so ND is closed under inverses and therefore a
group.

We call this the 'internal semi-direct product’ of N and D.
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So now, with
LK

N
L G K
k /
F
with L N K = F then, as we mentioned above, NN D = {1} and so

[NI-1D] _

ND| = =
VD NN D|

[NI- D]

where now, [LK : K] = |D|, [LK : L] = |N| and
1G] =[LK : F]=[L: F][K : F] = [LK : K][LK : L] = |N| - |D| which
means

G=ND

namely G is the internal semi-direct product of N and D.

Timothy Kohl (Boston University) MAB42 Lecture April 14, 2025

13 /18



However, we should emphatically point out that it's not necessarily the
case that ND = N x D.

Since G = ND, where N < G then this means that gNg~! = N for all
geG.

As such when multiplying (n1d;)(n2dz) we can write
n1d1n2d2 = n1d1n2d1_1d1d2 = n1(d1n2d1_1)d1d2

where now, since N < G then d1n2d1_1 € N so the product is in ND again.
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The product in ND being induced by the 'action’ of D on N is an example
of a group automorphism.

Definition

For a group G, a bijective homomorphism o : G — G is called an
automorphism of G.

And, like a Galois group, the composition of group automorphisms is a
group automorphism so we have:

Definition

For a group G, the set of all automorphisms of G is itself a group, and is
denoted Aut(G).
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For example, if G = Z, then Aut(G) = U(n) since if ¢ : Z, — Zp is an
automorphism then it must be one-to-one, and since 1 generates Z, then
1 is determined by (1), since then ¢(k) = ¢(k - 1) = kyy(1).

If now (1) = r then we must have |r| = |1| = n which means r € U(n),
i.e. ged(r,n) =1.

If we denote by 1), the automorphism for which ¢,(1) = r then
Ur, (U1, (1)) = ¢y (r2) = 1 - r2, thus Aut(Z,) = U(n) where

U(n) > r— ¢, € Aut(Zp)
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Automorphisms can be used to define a way of combining groups to get
new groups.

Definition

If N and D are groups, and f : D — Aut(N) is a homomorphism, then the
(external) semi-direct product N x¢ D is a group, where the elements
consist of ordered pairs (n,d) (i.e. N x D) but where the multiplication is
defined as follows:

(nl, d1) * (n2, dg) = (nlf(dl)(ng), d1d2)

where the identity is (e, ep) and (n,d)~! = (f(d~1)(n71),d 1)

One can check (Exercise!) that N x¢ D is associative.
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And we note that although N x¢ D is, as a set, the direct product, the
group structure is more complicated.

However, if f : D — Aut(N) is trivial, namely f(d) = Iy for all d € D then
(m, di) * (m2, d2) = (mf(d1)(m), didx) = (mn2, didy)

so that the group structure is that of the direct product, so the direct
product is just a special case of semi-direct product.

So what does this have to do with Galois groups, and our example where
G = ND?
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